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Abstract. New criteria are proposed for extracting multiple
minor components associated with the covariance matrix of an
input process. The proposed minor component analysis (MCA)
algorithms are based on optimizing a weighted inverse Rayleigh
quotient so that the optimum weights at equilibrium points are ex-
actly the desired eigenvectors of a covariance matrix instead of an
arbitrary orthonormal basis of the minor subspace. Variations of
the derived MCA learning rules are obtained by imposing orthog-
onal and quadratic constraints and change of variables. Some of
the proposed algorithms can also perform PCA by merely changing
the sign of the step-size. These algorithms may be seen as MCA
counterparts of Oja’s and Xu’s systems for computing multiple
principal component analysis. Simulation results to demonstrate
algorithm performance are also presented.

Keywords: minor component analysis, principal component
analysis, Oja’s learning rule, inverse Rayleigh quotient.

1. Introduction

The minor subspace of dimension p associated with a covariance
matrix B is spanned by the eigenvectors corresponding to the
smallest p eigenvalues of the sample covariance matrix. The minor
components are the directions in which the data have the small-
est variances. They usually represent the statistics of the additive
noise. MCA has been applied to frequency estimation [1], [2], bear-
ing estimation [3], and digital beamforming [4]. It has also been
applied to total least squares algorithms for parameter estimation
[5], [6]; The problem encountered in many real-time applications
is the difficulty of successively estimating the minor eigenvectors
that span the desired subspace. Several stochastic gradient algo-
rithms have been reported as viable solutions [7], but most of them
suffer from a slow convergence rate. A comprehensive analysis of
single minor component analysis is given in [8].

It is known that the Oja flow is only capable of extracting
the principal subspace but not the principal eigenvectors. Flows
that achieve the principal component analysis were first proposed
by Sanger [9], Oja et al. [10], and Xu [11]. Dynamical systems
for computing minor components and diagonalization are given in
[12] and [13], respectively. In this paper we develop gradient flows
that are capable of extracting the minor subspace and the minor
eigenvectors from the optimization of a weighted inverse Rayleigh
quotient (WIRQ). WIRQ has several attractive properties that
can be exploited for deriving MCA and PCA algorithms. These
include boundedness, homogeneity and some orthogonality prop-
erties. Additionaly, WIRQ has only one minima and one maxima.

2. Problem Formulation

Suppose that the input vector sequence xk ∈ IRn is a station-
ary stochastic process with zero mean and covariance matrix
B = E(xxT ) with the eigenvalues 0 < λ1 < · · · < λn and the
corresponding orthonormal eigenvectors z1, · · · , zn. Let p be an
integer such that 1 ≤ p ≤ n and let the eigendecomposition of B
be given as B = Z1Λ1ZT

1 + Z2Λ2ZT
2 , where Z1 = [z1, · · · , zp],

Λ1 = diag{λ1, · · · , λp}, Λ2 = diag{λp+1, · · · , λn}, and Z2 =
[zp+1, · · · , zn]. To find the p (1 ≤ p ≤ n) smallest eigenvalues
λ1, · · · , λp, and corresponding eigenvectors z1, · · · , zp we define the

following criterion:

Maximize{F (U) = tr{(UT U)(UT BU)−1D} (1)

over all full rank matrices U ∈ IRn×p. Here tr(X) denotes the
trace of a square matrix X, (.)T denotes matrix transpose, D is a
diagonal matrix of size p having distinct positive eigenvalues. It
will be assumed that D = diag(μ1, · · · , μp) and that μ1 > μ2 >
· · · > μp > 0.

In the sequel, we use WRQ to denote the weighted Rayleigh
quotient defined by WRQ(U, B, D) = (UT BU)(UT U)−1D and
WIRQ to denote the weighted inverse Rayleigh quotient defined
by WIRQ(U, B, D) = (UT U)(UT BU)−1D. Also, unless other-
wise stated the gradient is defined with respect to the Euclidean
inner product 〈X, Y 〉 = tr(XT Y ) on matrix space.

The most relevant properties of the WRQ and WIRQ are sum-
marized in the following remarks:

1. Homogeneity: In general F (U) = F (UE) for any diagonal
matrix E. The converse is also true, i.e., if F (U) = F (UE)
and D is diagonal matrix with distinct eigenvalues, then E
is essentially diagonal. This property explains why we con-
sider the weighted forms of Rayleigh quotient for computing
MCA. However, if D = Ip, where Ip denotes a p × p iden-
tity matrix, then F (U) = F (UE) holds for any nonsingular
matrix E. The last property implies that any solution of (1)
with D = Ip is determined upto a multiplication by a non-
singular matrix. However, this indeterminacy is removed if
a diagonal matrix D is incorporated.

2. Boundedness: As U ∈ IRn×p ranges over all full rank ma-
trices, F (U) remains bounded from above and below.

3. Orthogonality: If D = Ip the following orthogonality prop-
erty holds

UT {U − BU(UT BU)−1UT U} = 0

UT {BU − U(UT U)−1UT BU} = 0.
(2)

These properties are equivalent to performing the Gram-
Schmidt process to the matrices U and BU with respect to
some dot products.

The following proposition deals with the WIRQ critical points.

Proposition 1 (Stationarity). Let D be a diagonal matrix such
that the diagonal entries of D are positive, distinct, and arranged
in descending order and let B be a real symmetric n-dimensional
matrix with eigenvalues 0 < λ1 < · · · < λp < λp+1 < · · · < λn
and the corresponding orthonormal eigenvectors z1, · · · , zn. Then

max{F (U)} =

p∑
k=1

dk

λk
(3a)

min{F (U)} =

p∑
k=1

dk

λn−k+1
. (3b)

Moreover, the global minimum and the global maximum are at-
tained if and only if U = Z1Π1 and U = Z2Π2 respectively, where

II  5611424407281/07/$20.00 ©2007 IEEE ICASSP 2007



Z1 = [z1 · · · zp] and Z2 = [zp+1 · · · zn] and Π1, Π2 are permutation
matrices. More generally, the critical points and critical values of
F (U) are of the form U = [zi1 · · · zip ], where (i1, · · · , ip) is a pth

order permutation of {1, · · · , n}. All other critical points are sad-
dles.

Outline of Proof: Let U = ZE, where Z is any matrix consisting
of p eigenvectors, and E is a nonsingular matrix, then

F (ZE) = tr((ET E)(ET ΛE)−1D)

= tr(ET Λ−1E−T D),
(4)

where Λ = diag(λi1 · · ·λip ) and (i1, · · ·λip ) is a permutation of

{1, · · · , n}. The possible maximum or minimum of F (U) occurs
when ∇Etr(WIRQ(ZE, B, D)) = ∇EF (ZE) = 0. It can be
shown (see Appendix, Proposition 5) that

∇EF (ZE) = −E−T DET Λ−1E−T + Λ−1E−T D. (5)

This implies that

ET Λ−1E−T D = DET Λ−1E−T .

Since D is diagonal with distinct eigenvalues, it follows from
Proposition 6 that ET Λ−1

p E−T is diagonal. Thus the only pos-
sible solution of ∇Etr(F (ZE)) = 0 is that E = D1P , where D1
is diagonal, and P is a permutation matrix. Now, at stationarity
points the objective function is given by

F (E) = F (D1P ) = tr(PΛ−1P T D). (6)

Clearly, since the diagonal entries of D are in descending order,
then among all possible Λ and all possible permutations P , the
maximum of F (U) occurs at Λ = Λ1 and P = Ip. Similarly,
the minimum occurs at Λ = diag(λp+1, · · · , λn) and P = J ,
where J is the interchange matrix given by J = [ep, ep−1 · · · e1]
where ei is the ith column of a p × p identity matrix Ip. To
examine the critical points for maxima and minima, we have to
show that the Hessian matrix defined (see Appendix) as Hφ(U) =

∂
(vecU)T

(
∂φ(U)

∂(vecU)T

)T

, where φ(U) = tr(F (U)), is positive def-

inite at U = Z1 and negative definite at U = Z2. After some
derivations, we have

d2F

dU2
= D(UT BU)−1 ⊗ Ip + (UT BU)−1D ⊗ Ip

−D(UT BU)−1 ⊗ U(UT BU)−1UT B + (UT BU)−1D

⊗ BU(UT BU)−1UT −Kpn{BU(UT BU)−1D

⊗ (UT BU)−1UT −D(UT BU)−1UT B ⊗ U(UT BU)−1.

(7)

Here vec stands for the operation of stacking the columns of a ma-
trix into one column, and ⊗ denotes the Kronecker matrix prod-
uct. The matrix Krn denotes the pn × pn commutation matrix;
KT

pn = K−1
pn = Kpn and Krm(A ⊗ C) = (C ⊗ A)Kqn, where

A ∈ IRm×n and C ∈ IRr×q. After long but straightforward cal-
culations (not included due to space limitation), it can be shown
that Htr(FU) is negative definite at U = Z1 and positive definite
at U = Z2. It is non definite at any other critical points.

Q. E. D.
Proposition 1 indicates that with a properly chosen D, F (U)

has exactly one global minima and one global maxima.

3. Unconstrained Optimization Procedure

In effect, Equation (1) is an unconstrained optimization problem
on the set Ω = {U : UT BU > 0}. Deriving F (U) with respect to
U , we obtain the gradient equation (see Appendix)

∇F = U(UT BU)−1D + UD(UT BU)−1 −BU(UT BU)−1

×DUT U(UT BU)−1 − BU(UT BU)−1UT UD(UT BU)−1.
(8)

If D = Ip, then ∇F simplifies to

∇F = U(UT BU)−1 − BU(UT BU)−1UT U(UT BU)−1. (9)

It can easily be seen that an orthogonality property holds
UT∇F = 0 or U ⊥ ∇F . This property turns out to be significant

in convergence analysis (see Section 4) by analyzing the ordinary
differential equation (ODE) associated with the gradient system
(8):

U ′ = ∇F = U{(UT BU)−1D + D(UT BU)−1}
−BU(UT BU)−1{DUT U + UT UD}(UT BU)−1,

(10)

where U ′(t) =
dU(t)

dt
. To alleviate matrix inversion, the quadratic

constraint UT BU = Ip is imposed so that for any U satisfying

UT BU = Ip we have

U ′ = ∇F = 2UD −BU{DUT U + UT UD}. (11)

In the next proposition, we show that under a mild condition,
the gradient ascent with sufficiently small step-size converges to
MCA.

Proposition 2. Let D and B be as in Proposition 1 and let U∞
be the solution of the difference equation

Uk+1 = Uk + α{UkD − 1

2
BUk(DUT

k Uk + UT
k UkD}, (12)

for some learning step size α ∈ (0, 1). Assume that DUT∞U∞ +
UT∞U∞D is non-singular. Then the limiting solution U∞ of the
gradient ascent iteration (12) satisfies the following:

1. UT∞BU∞ = Ip

2. UT∞U∞ is diagonal

3. F (U∞) =
∑p

k=1
dk
λk

4. U∞ = Z1Λ
−1
2

1

Outline of Proof: Since there is only one maxima, then for any
initial matrix U0 satisfying UT

0 BU0 = Ip the gradient ascent (12)
converges globally to system’s equilibrium point. Assume that
U∞ is the limiting solution of the gradient ascent iteration (12),
then UT∞U∞D = UT∞BU∞H, where H = UT∞U∞D + DUT∞U∞.
Clearly,

2H = HUT
∞BU∞ + UT

∞BU∞H. (13)

We show next that each eigenvalue of UT∞BU∞ is equal to 1.
Let λ be an eigenvalue of UT∞BU∞ with corresponding eigen-
vector x, then UT BUx = λx. By post-multiplying and pre-
multiplying both sides of (13) by x and xT , respectively we obtain
2xT Hx = λxT Hx+λxT Hx and thus (1−λ)xT Hx = 0. The non-
singularity of H implies that λ = 1. Since UT∞BU∞ is symmetric
then B = In. Consequently, UT∞U∞D = DUT∞U∞. Since D is di-
agonal with distinct eigenvalues, we have from Proposition 6 that
UT∞U∞ is diagonal. This shows that UT∞U∞ = Λ−1

1 and BUT∞ =

U∞(UT∞U∞)−1 = U∞Λ−1
1 . Consequently, U∞ = Z1Λ

−1
2

1 .
Q. E. D.

Remarks: It should be noted that although both matrices D
and UT∞U∞ are positive definite, the symmetric matrix H =
UT∞U∞D+DUT∞U∞ generally may not be nonsingular or positive
definite even when D is positive definite. Another observation is
that since UT∞U∞D = DUT∞U∞, one may use the approximation
UT

k
UkD ≈ DUT

k
Uk, for sufficiently large k so that (12) can be

approximately expressed as

Uk+1 = Uk + α{UkD − BUkDUT
k Uk}. (14a)

Note that the last learning rule can be seen as the MCA counter-
part of Xu’s PCA learning method [11]. Now let us examine the
special case D = Ip and UT BU = Ip. The ODE (10) reduces to a
minor subspace gradient flow

U ′ = U −BUUT U. (14b)

However, this flow is only capable of extracting the minor subspace
of B but not the minor eigenvectors. The limiting solution is
orthonormal with respect to the Euclidean inner product 〈X, Y 〉 =
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tr(XT BY ) on matrix space, i.e., UT∞BU∞ = Ip. To extract the
true MCA, a modification of (14b) can be made so that

U ′ = U −BUg(UT U), (15)

where g(X) is the upper triangular part of X. Another variation
of (9) is obtained by choosing UT BU = D, in which case the ODE:
U ′ = U(UT BU)−1 − BU(UT BU)−1UT U(UT BU)−1, reduces to

U ′ = UD − BUDUT UD. (16a)

Numerical simulations suggested that this learning rule performs
only minor subspace analysis (MSA) but not the true MCA. If B
is assumed symmetric, then B + αI is positive definite for some
α ≥ 0. Thus system (14b) simplifies to

U ′ = U(I − αUT U)− BUUT U. (16b)

Numerous MCA/MSA variations can be obtained by a change
of variables approach. For example by considering the change of

variables: U = μ
1
2 GV D

1
2 , where μ > 0, D is diagonal mayrix,

and G is positive definite matrix, then (14b) transforms into

μ
1
2 GV ′D

1
2 = μ

1
2 GV D

1
2 − μ

3
2 BGV DV T G2V D

1
2 ,

or equivalently,

V ′ = V − μG−1BGV DV T G2V.

The matrix G can be chosen to be a diagonal preconditioner for

cases where B is near singular. If μ = 1 and G = B
1
2 , we obtain

the following gradient flow: V ′ = V − BV DV T BV .

PCA Flows: The MCA flow of (10) can be converted to a PCA
flow by merely changing the sign of the gradient. This follows
directly from Proposition 1, Eq. (3b). Finally, by considering the
matrix λIn −B instead of B, where λ > λn, all the MCA rules in
this paper convert to PCA learning rules.

Remarks: If the matrix B in (14b) is replaced with the iden-
tity matrix, we obtain the following orthonormalization dynamical
system:

U ′ = U − UUT U.

Clearly this system is a gradient system since it can be derived
from the gradient of the cost function 1

2
tr(UT U)− 1

4
tr{(UT U)2}.

This cost function may be modified so that F (U) = 1
2
tr(UT U)−

1
2s

tr{(UT U)s}. The corresponding gradient system is given by

U ′ = U − U(UT U)s, s is positive integer.

The stability and invariant sets of this system can be examined
using V (U) = 1

4
tr{(UT U − I)2}, in which case

V̇ = tr{(UT U − I)(UT U − (UT U)s)}

= −tr{(UT U − I)2UT U

s−1∑
k=0

(UT U)k} ≤ 0.

Clearly, V̇ = 0 only if (UT U − I)UT = 0, or (UT U)2 = UT U ,
i.e., UT U is a projection. Thus from Lyapunov stability the-
ory, the system is stable for any positive integer s. In any
of the above orthonormalization flows, if a solution U(t) esists
for t ≥ 0 satisfying U(0) = U0, where U0 is full rank, then

limt∞ U(t) = U0(UT
0 U0)

−1
2 . Here (UT

0 U0)
−1
2 represents the prin-

cipal square root of (UT
0 U0)−1.

4. Dependence on Initial Conditions

Convergence properties of the proposed algorithm can be studied
by considering the gradient rule (10). For simplicity, we only con-
sider the case D = Ip. Thus, we consider the continuous-time
dynamical system described by the (ODE)

U ′ = U(UT BU)−1 − BU(UT BU)−1UT U(UT BU)−1. (17)

It should be noted that the system (17) is a minor subspace ana-
lyzer. It can be shown that by switching the sign of B, System (17)
converts into a principal subspace analyzer. We show in the next
result some properties of solutions of (17) and their dependence
on the initial condition.

Proposition 3. Let U(t) be the solution of the ODE (17) in
the interval t ∈ [0, ∞), and assume that U(0)T Z1 is nonsingu-
lar. Then, for all t ∈ [0, ∞), we have U(t)T U(t) = U(0)T U(0),
rank U(t) = rank U(0), and ||U(t)|| = ||U(0)||.
Outline of Proof: From (17), U(t) satisfies the following ODE:

d(UT U)

dt
= U ′T U + UT U ′ = 0. (19)

This shows that U(t)T U(t) is constant, or U(t)T U(t) =
U(0)T U(0). The rest of conclusion follows from the last obser-
vation.

Q. E. D.
Proposition 3 establishes that the solution of (17) is of the

form U(t) = U(0)Z(t) where Z(t) ∈ Rp×p is orthogonal for all
t ∈ [0, ∞). It can easily be seen that Z(t) satisfies the ODE:

Z′(t) = (UT (0)BU(0))−1Z(t)−
(UT (0)U(0))−1Z(t)UT (0)BU(0)ZT (t)(UT (0)BU(0))−1Z(t).

(20)
The significance of the last ODE is that solving n-dimensional

equation can be obtained by solving a p-dimensional equation (20)
which has much less computational demand when p << n.

5. Simulation Results

In this section, we present a simulation result to demon-
strate the behavior of the WIRQ algorithm. This simula-
tion serves to show the transient behavior of the learning
in the minor eigenvectors. By solving the associated ODE
(11) using the Euler method, the difference equation (12) is
obtained. A random vector sequence from an ideal 8 ×
8 covariance matrix B is generated with these eigenvalues:
8.7822, 8.8189, 8.1260, 9.8730, 10.6173, 7.3788, 11.2716, 18.2215.
The gradient ascent (12) is applied with p = 4 and learn-
ing step size α = 0.02. The matrix D is chosen as D =
diag(0.54, 0.35, 0.25, 0.1). One hundred random experiments are
conducted each using different initial matrix U0. The parameters
α, and D are kept the same. The convergence behavior in this
example is measured in two ways. Both ways measure how fast
UT

k
Uk and UT

k
BUk converge to Λ−1 and I4, respectively. The

range of k is k = 1, · · · , 3000. The first accuracy measure is com-
puted as the Frobenius norm of the matrix of the off-diagonal
elements of (UT

k
Uk)−1 shown in Figure 1, and the second is given

by ||UT
k BUk − I4||F , as shown in Figure 2. Here ||X||F denotes

the Frobenius norm of X. It is observed from the Figures that the
WIRQ algorithm converges to the true minor subspace.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

4

Figure 1: Convergence behavior of (UT
k

Uk)−1. The x-axis is the
number of iterations, and the y-axis contains the magnitudes of
the off-diagonal entries of (UT

k
Uk)−1.
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Figure 2: Convergence behavior of UT
k BUk. The x-axis is the

number of iterations, and the y-axis contains the Frobenius norm
of UT

k BUk − I4.

6. Conclusion

This paper proposes an unconstrained optimization criterion using
a weighted inverse Rayleigh quotient algorithm for extracting mul-
tiple minor components. Based on the gradient-ascent method, we
derive several WIRQ algorithms for performing the true MCA re-
cursively. Many issues remained to be analyzed including numeri-
cal complexity, global convergence, and comparisons with existing
methods. The invariant sets of the system (14b) is another area
of interest. Additional simulations not included here have shown
that the system (14b) always converges even when the initial con-
dition has very small nonzero norm. Generally, it is noticed that
the system (14b) converges for any nonzero generic initial condi-
tion. This suggests that the system (14b) is globally convergent.
Also the convergence behavior of of the systems (14a) and (16b)
for symmetric matrices needs to analyzed. Some of these issues
will be addressed in a forthcoming paper.

Appendix

We briefly present some facts from matrix differential calculus.
The computation of derivatives can be performed simply based on
the following lemma [14].

Lemma 4. Let φ be a twice differentiable real-valued function of
an n× p matrix. Then, the following relationships hold:

dφ(X) = tr(AT dX) ⇔ ∇φ(X) = A (A.1)

d2φ(X) = tr(B(dX)T CdX)⇔ Hφ(X) =
1

2
(BT ⊗ C + B ⊗ CT )

(A.2)

d2φ(X) = tr(B(dX)CdX) ⇔ Hφ(X) =
1

2
Krn(BT ⊗C +CT ⊗B)

(A.3)
where d denotes the differential, and A, B, and C are matrices,
each of which may be a function of X. The gradient of φ with
respect to X and the Hessian matrix of φ at X are defined as

∇φ(X) =
∂φ(X)

∂X

Hφ(X) =
∂

(vecX)T

(
∂φ(X)

∂(vecX)T

)T

(A.4)

where vec is the vector operator.

Proposition 5. Let g(X) = tr((XAX−1D), where A and D are
square matrices and X is a nonsingular square matrix, then

dg

dX
= −X−T AXT DX−T + DX−T A

The proof of this result is a direct application of A.2 and A.3.

Proposition 6. Let D, A ∈ IRn×n be positive definite matrices
and assume that D is diagonal having distinct eigenvalues. If
AD = DA, then A is diagonal.

Proof: Assume that A = [aij ] and D = diag(μ1, · · · , μn), then for
each i, j we have aijμj = μiaij or (μj − μi)aij = 0. Thus aij = 0
for i = j, i.e., A is diagonal.

Theorem 7. Let D, A ∈ IRn×n be positive definite matrices and
assume that D is diagonal having distinct eigenvalues. If PDP =
D for some positive definite matrix P , then P = Ip.

Proof: From the assumption that PDP = D, it follows that
DP = P−1D, and thus D2P = DP−1D = PD2, i.e., P and D2

commute. Proposition (6) implies that P is diagonal. It follows
that P 2 = Ip, or equivalently P = diag(d1, · · · , dp), where di =
±1. Since P is positive definite, we have P = Ip.

Q. E. D.

Corollary 8. Let D be a diagonal matrix with distinct eigenval-
ues and let P be positive definite. If PDP is diagonal, then P is
diagonal.

Proof: Assume that PDP = D1 for some diagonal matrix D1,

and let D2 = (DD−1
1 )

1
4 . Then P̄D3P̄ = D3, where P̄ = D2PD2

and D3 = (DD1)
1
2 . Theorem 7 implies that P̄ is diagonal and

hence P is diagonal.
Q. E. D.
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