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ABSTRACT 
This paper presents a new Bayesian regression and learning 
algorithm for adaptive pattern classification. Our aim is to 
continuously update regression parameters to meet 
nonstationary environments for real-world applications. 
Here, a kernel regression model is used to represent two-
class data. The initial regression parameters are estimated by 
maximizing the likelihood of training data. To activate 
online learning, we properly express the randomness of 
regression parameters as a conjugate prior, which is a 
normal-gamma distribution. When new adaptation data are 
enrolled, we can accumulate sufficient statistics and come 
up with a new normal-gamma distribution as the posterior 
distribution. We therefore exploit a recursive Bayesian 
algorithm for online regression and learning. Regression 
parameters are incrementally adapted to the newest 
environments. Robustness of classification rule is assured 
using online regression parameters. In the experiments on 
face recognition, the proposed regression algorithm 
outperforms support vector machine and relevance vector 
machine for different numbers of adaptation data. 

Index Terms—Recursive Bayesian learning, kernel 
regression, incremental adaptation, support vector machine, 
pattern recognition 

1. INTRODUCTION 
Due to the power of model generalization, support 

vector machine (SVM) [13] has been attracting many 
researchers working on the related issues. Continuing 
improvements in SVM have led into many successful 
applications in pattern recognition, e.g. information retrieval 
[10], speech recognition [11], and face recognition [7]. 
However, in real-world applications, such generalization is 
not sufficient to meet continuously changing environments. 
For example, face recognition performance is always 
degraded when the environmental conditions of illumination, 
facial expression, and pose angle are mismatch with those in 
training data. We should build adaptation/learning 
mechanism to overcome mismatch problem. Especially, in 
nonstationary environments, testing conditions are varied all 
the time. How to build online adaptation for SVM or other 
models becomes important for robust pattern recognition [4]. 
In this study, we are developing online adaptation algorithm 
from Bayesian learning viewpoint. In the literature, 

Bayesian interpretation of SVM has been discussed in [5][6]. 
Bayesian support vector regression with an evidence 
framework was proposed to connect the relations to 
MacKay’s Bayesian framework [8]. Nevertheless, it was 
necessary to compute the integral in evidence framework. 
Some approximations were engaged so that no exact 
Bayesian explanation for SVM was available. Although 
SVM could be interpreted by Bayesian theory, these 
methods were not developed for Bayesian learning in 
presence of nonstationary environments. 

For these results, we present a new recursive Bayesian 
(RB) regression framework for general pattern classification. 
This framework can fulfill the spirit of SVM, namely 
maximization of margin and minimization of classification 
errors. Attractively, we adopt the conjugate prior 
distribution to express the perturbation of regression 
parameters. When adaptation data are collected, we can 
produce a posterior distribution, which belongs to the same 
distribution family as prior function [2]. This reproducible 
prior/posterior pair activates an online learning strategy for 
kernel regression model. This RB method can be also 
simplified as a batch learning that only one learning epoch 
is executed. We investigate the performance of online 
regression model on FERET facial database containing 
various conditions of lighting, expression and orientation. In 
what follows, we begin with a survey of regression models 
for pattern classification. Subsequently, we construct the 
recursive Bayesian approach to kernel regression model and 
explain its relations to previous methods. Finally, we 
demonstrate the performance of proposed method and draw 
some conclusions. 

2. RELATED WORKS 
We are introducing Bayesian kernel regression methods. 

Some notations should be explained. Given input data 
mx , we transform it to high dimensional space dz ,

md , using function )(x . We collect a set of input-output 
training samples n

iii yD 1)},{(z  for supervised training. 
Kernel function is calculated by dot product of two samples 

jijijiK zzxxxx )()(),( . Considering a two-class 
pattern classification problem, output iy  represents class 
label, e.g. 1iy  for class 1 and 1iy  for class 2. 
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2.1. Bayesian Support Vector Regression 
Using SVM, we are seeking the optimal hyperplane 

bf T zwzw ),( , which has the maximum margin between 
support vectors of two classes. Vapnik [13] also extended 
SVM to kernel-based support vector regression (SVR). In 
SVR, training samples of a class are represented by 

ii
T

i by zw .                           (1) 
This insensitive loss function [13] was presented to 
obtain the sparseness property of SVM. Hence, we have 

),(, * wx iiii fy  as a modeling error with value of 
being margin width.  is empirically defined. Using this 
loss function, the estimation accuracy of outliers will not 
hurt too much. The optimal parameters of w  and b  are 
obtained according to the least square error criterion 

n

i
iiC

1

2 )(
2
1 w .                          (2) 

How to automatically determine regularization parameter C
for various datasets becomes a crucial issue. Kwok [5] 
illustrated the relationship between SVM and MacKay’s 
Bayesian framework. The hyperparameters of SVM were 
estimated by maximizing the evidence. 

In SVR model [6], the parameter w  was assumed to be 
random and C . Meaningfully, the hyperparameter 
controls the model complexity. The hyperparameter 
controls the training error. The prior distribution of w  is 
Gaussian distributed  

)
2

exp()( 2wwp .                      (3) 

Assuming training samples are i.i.d., the output distribution 
of training samples D  is [5]  

)(),,(),,(),( 11 i
n
i ii

n
i ii pypypDp zwzwzw ,  (4) 

where an exponential distribution is specified as 

)1(2

)exp(
),,( i

iiyp wz .                 (5) 

The posterior probability of w  can be formulated by 

www
ww

w
dpDp

pDp
Dp

)(),(
)(),(

),,( .            (6) 

The optimal parameter of w  is calculated by maximizing 
this posterior probability. Optimal MAP estimate MAPw  is 
used to approximate the evidence in (6). Optimal values of 

 and  are then obtained by iterating the process of 
finding MAPw  and maximizing the evidence. Parameter b  is 
determined correspondingly. The integral in evidence is 
done in accordance with MacKay’s evidence framework [8]. 
In [1], SVR was regarded as a classification problem in the 
dual space. No model learning was concerned in these 
works. 

2.2. Relevance Vector Machine 
Accordingly, Tipping [12] presented Bayesian learning 

via a relevance vector machine (RVM). Different from 

Bayesian SVR [6], RVM assumed that parameters  and 
are random. The training samples are represented as  

j

n

i
ijij bKwy

1
),( xx .                        (7) 

where the relevance is revealed by kernel function ),( jiK xx .

Let TT b],[~ ww  denote model parameters. A normal 
distribution with adjustable variance  is assumed for w~ .
The gamma distribution over  with hyperparameter  is 
given by  

n

i
ip

0
)Gamma()( .                         (8) 

A zero-mean Gaussian prior distribution over w~  is given as 
n

i
iiwbp

1

11
0 ),0(),0()~(w .               (9) 

The likelihood function of all the data conditional on 
unknown parameters is expressed by

)~()~(
2

exp
)2(
)(),~( 2/

2/
wywywy T

n

n

p      (10) 

where T
n )](,),([ 1 xx  is the )1(nn  matrix and  

T
niii KK ]1),,(,),,([)( 1 xxxxx . Parameter  is a precision 

in density (10). The gamma distribution over  is also 
engaged in 

)Gamma()(p .                         (11) 
These priors were assumed to be non-informative. Using (6), 
(9) and (10), we obtain the posterior distribution over w~  as 
a Gaussian distribution 

)~()~(
2
1exp

)2(
),,~( 1

2/)1(

2/1

wwyw T
np ,  (12) 

where the mean vector is yT , the covariance 
matrix is 1)( IT , and I  is the )1()1( nn
identity matrix. We have the result of w MAP . Optimal 

 and  are obtained by MacKay’s evidence framework 
[8]. Finally, we can classify a test pattern according to 
likelihood function of (10). 

3. RECURSIVE BAYESIAN REGRESSION 
Basically, Bayesian SVR [5][6] provided Bayesian 

solution to SVM and extended SVM paradigm to deal with 
regression problem. Instead of merging support vectors, 
RVM [12] took relevance vectors into account and derive 
the predictive posterior distribution to activate Bayesian 
learning. Prior densities of parameters w~  and their 
hyperparameters ,  were defined. It was necessary to 
approximate the multivariate integral of evidence in 
MacKay’s framework [8]. In this study, we focus on 
developing Bayesian and incremental learning strategy for 
kernel regression model. Dummy variable is introduced in 
regression model so as to fit in with the maximum margin 
criterion adopted in SVM or SVR. 
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3.1. Regression Model Estimation 
To follow up the objective of maximum margin in SVM, 

the dummy variable }1,0{ic  is merged in regression 
model for each data pair [9]. This dummy label is used to 
describe the supervision of input pattern. Similar to SVR in 
(1), the training samples are now represented as 

iii
T

i cby zw ,                         (13) 
where  can be regarded as the margin between two classes. 
The model parameters turn out to be Tb ],,[~ ww  and the 
input pattern can be extended to T

i
T
ii c ],1,[~ zz . We can find 

the least-square solution to regression parameters w~  by 
minimizing 

)~~()~~(
1

2 wZywZy TT
n

i
i ,                 (14) 

where T
n ]~,,~[~

1 zzZ . Reducing this expected error is able 
to achieve maximum margin and minimum classification 
error. The least-squares estimator is built by yZw 1~~ˆ T

where T
n ]~,,~[~

1  is a nn  matrix given 
T

niii ]~~,,~~[~
1 zzzz . We can rearrange (14) to be [9] 

)]ˆ~(~[)]ˆ~(~[)ˆ~()ˆ~()~~()~~( wwZwwZwZywZywZywZy TTT

(15) 
After careful derivation and consideration of (10)(15) and 
the assumption in RVM, we write the likelihood function in 
a form of 

exp)ˆ~(
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where 1~R , 2/)2(n , )ˆ~()ˆ~(-1 wZywZy T  and  
1ij1  for all ji, . In (16), the first term is viewed as a 

Gaussian density for w~  given , and the second term is 
viewed as a gamma density for . This distribution is 
known as normal-gamma distribution. 

3.2. Recursive Bayesian for Incremental Learning 
To activate incremental learning, we select the prior 

density of regression parameters w~  and  as a conjugate 
prior [3], which is a normal-gamma distribution 

),,,ˆ(GammaNormal),~( Rwwp .            (17) 
Advantage of considering this conjugate prior is twofold. 
First, the prior density and the pooled posterior density 
belong to the same distribution family so that the 
incremental learning mechanism can be activated. Second, 
the computation of model parameters is efficient because 
the mode of posterior density turns out to be MAP estimate. 
In incremental learning, we collect a sequence of block data 

},,{ )()1( TT DDD  for model adaptation in individual 
epoch. At learning epoch t , we have current block data 

tn
i

t
i

t
i

t yD 1
)()()( )},{(z  and sufficient statistics accumulated 

from previous data sequence },,{ )1()1(1 tt DDD . We are 
calculating the posterior distribution, which combines the 
likelihood function of current block data )(tD  and the prior 
density calculated from historical data 1tD
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where tt ZZV ~~ 1  and t
tt nnn 1 . Hence, we have a 

posterior distribution such as this form 
),,,ˆGamma(Normal),~( tttttt Dp Rww ,      (19) 
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and  )(1 ttt .
Attractively, the posterior distribution in (19) comes up 

with a normal-gamma distribution which is the same as the 
prior distribution determined from previous data 1tD . It is 
important that the hyperparameters of new normal-gamma 
distribution provide the updating mechanism of sufficient 
statistics from ),,,ˆ( 1111 tttt Rw  to ),,,ˆ( tttt Rw . Using 
this reproducible normal-gamma distribution, we are able to 
learn kernel regression parameters for any time when a 
block of adaptation data is enrolled. Different from SVR 
and RVM, we don’t need to apply evidence framework to 
find hyperparameters. The existing models can be adapted 
to the nonstationary environments. Robustness of pattern 
recognition is guaranteed. 

4. EXPERIMENTS 
4.1. Experimental Conditions  

In this paper, we evaluate the performance of recursive 
Bayesian regression for face recognition on public domain 
FERET database. We selected 200 persons from b set of 
FERET database. Each person had 11 face images. 
Resolution of each image was in 384256  pixels. Face 
region was in 156138  pixels. As shown in Figure 1, ba, bj
and bk indicate the frontal images. bj and bk has different 
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facial expression and lighting condition, respectively. bb
through bi is a series of images under different pose angles. 

      

   ba bj bk   

bb bc bd be bf bg bh Bi 
Figure 1: Examples of one person in FERET database. 

To test system robustness, for each person, we adopted 
three images, ba, be, and bf, to train the initial prior model 
in (16)(17). Number of adaptation data for initial prior 
model was equivalent to 0. We performed five-fold cross 
validation through random selection from the other images. 
For each person, four images were selected for examination 
of batch learning as well as incremental learning. The 
remaining four images served as test images. Here, we used 
RBF kernel function  

22
RBFexp),( jijiK xxxx .                 (20) 

with the given parameter 1002
RBF . The regularization 

parameter C  was obtained by Bayesian SVM method [5]. 
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Figure 2: Comparison of recognition accuracies (%) using 
SVM, RVM and RBR. 

4.2. Experimental Results 
In Figure 2, we compare the results of the proposed 

recursive Bayesian regression (RBR) algorithm, SVM and 
RVM. These methods are based on binary classification, 
one-against-one strategy. Class number is 200. Batch SVM 
[13], incremental SVM [4] and RVM [12] were carried out. 
The proposed RBR method achieves over 85% recognition 
accuracy. The accuracies of RBR method are better than 
batch SVM, incremental SVM and RVM. We do see the 
consistent improvement by increasing number of adaptation 
data. These results show a significant performance by 
adapting the facial kernel regression when testing on the 
data in different environments. 

5. CONCLUSION 
We have presented a novel recursive Bayesian regression 

approach for online pattern recognition. Importantly, the 
relations to SVM, SVR and RVM were illustrated. The 
updating mechanism of sufficient statistics was developed. 
The advantages of proposed RVR method were its fast and 
robust capabilities. We have shown the improvement of face 
recognition compared to SVM and RVM. The incremental 
learning improvement from adaptation data was confirmed. 
The spirit of SVM with maximum margin and minimum 
error will be illustrated in the future. 
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