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ABSTRACT

Many signal processing applications of graphical models require ef-
cient methods for computing (approximate) marginal probabilities
over subsets of nodes in the graph. The intractability of this marginal-
ization problem for general graphs with cycles motivates the use of
approximate message-passing algorithms, including the sum-product
algorithm and variants thereof. This paper studies the convergence
and stability properties of the family of reweighted sum-product al-
gorithms, a generalization of the standard updates in which messages
are adjusted with graph-dependent weights. For homogenous mod-
els, we provide a complete characterization of the potential settings
and message weightings that guarantee uniqueness of xed points,
and convergence of the updates. For more general inhomogeneous
models, we derive a set of suf cient conditions that ensure conver-
gence, and provide estimates of rates. These theoretical results are
complemented with experimental simulations on various classes of
graphs.
Index terms: Graphical model; Markov random eld; belief prop-
agation, sum-product algorithm; message-passing; approximate in-
ference.

1. INTRODUCTION

Graphical models provide a powerful framework for capturing the
complex statistical dependencies exhibited by various classes of real-
world signals [1, 2]. A fundamental problem common to any sig-
nal processing application of a graphical model is that of computing
marginal probabilities over subsets of nodes. This marginalization
problem, though solvable in linear-time for tree-structured models,
is computationally intractable for more general graphs with cycles.
This dif culty motivates the use of ef cient algorithms for comput-
ing approximate marginal probabilities in graphical models with cy-
cles. A popular class of algorithms, including the sum-product algo-
rithm [3] and extensions thereof [4], is based on passing “messages”
between nodes in the graph. While computationally ef cient, the
standard form of sum-product message-passing is not guaranteed to
converge, and in fact may have multiple xed points.

Recent work has shed some light on the convergence properties
of the ordinary sum-product algorithm. Tatikonda and Jordan [5]
connect sum-product convergence to uniqueness of Gibbs measures
on the computation tree. These results have been extended in follow-
up work by other researchers [6, 7, 8]. At a high level, this line of
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research establishes that for suf ciently weak dependencies among
the random variables in the graphical model, the sum-product up-
dates have a unique xed point, and will converge at a geometric
rate. However, the sum-product algorithm is routinely applied to
graphical models that fail to satisfy the assumptions underlying these
theoretical guarantees.

The family of reweighted sum-product algorithms [9, 10, 11, 12]
is a broader class of message-passing algorithms, in which messages
are adjusted by edge-based weights determined by the graph struc-
ture. It includes the ordinary sum-product algorithm as a special
case, in which all the weights are unity. For suitable choices of these
weights, it can be shown [9] that reweighted sum-product—in sharp
contrast to the ordinary updates— always has a unique xed point
for any graph and any dependency strength. An additional bene t
of convexity is that the message-passing updates tend to be more
stable, as con rmed by experimental investigation [12, 9, 13] and
some theoretical analysis [10]. However, the convergence properties
of reweighted message-passing have not yet been fully understood.
Accordingly, the main contribution of this paper is convergence anal-
ysis of the family of reweighted sum-product algorithms.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide basic background on graphical models (with cy-
cles), and the class of reweighted sum-product algorithms that we
study. In Section 3, we begin by stating our main results, including a
discussion of how they are related to previous results on the ordinary
sum-product algorithm. We then turn to the proofs of these claims.
Section 4 provides experimental results to illustrate and support our
experimental ndings, and we conclude in Section 5 with a summary
and directions for future work.

2. BACKGROUND

We begin by providing background on graphical models, and (reweighted)
sum-product message-passing.

2.1. Graphical models

There exists a variety of graphical formalisms, including directed,
undirected and factor graphs. Here we focus on Markov random
elds, de ned by an undirected graphGwith vertices V = {1, . . . , n}
and edge set E. Associated with each vertex s ∈ V is a random
variable Xs, taking values in some space X . The random vector
X = (X1, . . . , Xn) is said to be Markov with respect to the graph if
its distribution decomposes into a product of terms over the cliques
of G. (A clique C ⊂ V of a graph G is a fully-connected subset of
vertices.)
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Fig. 1. Examples of graphical models. (a) A quad-tree model
used in multi-resolution signal processing [2]. (b) A lattice-
based model used in image processing.

In this paper, we restrict attention to the case of pairwise cliques (an
assumption which entails no loss of generality [4] for discrete spaces
X ), for which the p.m.f. of X decomposes as

p(x; θ) ∝ exp{
�
s∈V

θs(xs) +
�

(s,t)∈E

θst(xs, xt)}. (1)

Here the quantities θs and θst are potential functions that depend
only on the random variablesXs, and the pair (Xs, Xt) respectively.

Examples of such graphical models commonly used in signal
processing include the (hidden) Markov model, and the quad tree
model (Fig. 1(a)). In contrast to these graphs without cycles (in
which exact calculations are computationally feasible), of primary
interest in this paper are graphs with cycles, such as the lattice or
grid-based model shown in Figure 1(b).

2.2. Reweighted sum-product message-passing

The sum-product algorithm is an iterative algorithm, in which nodes
in the graph exchange statistical information via a sequence of message-
passing updates. For tree-structured graphical models, the updates
can be derived as a form of non-serial dynamic programming, and
are guaranteed to converge and compute the correct marginal distri-
butions at each node (see, e.g., [2]). However, the updates are rou-
tinely applied to more general graphs with cycles. Here we describe
the more general class of reweighted sum-product algorithms [9, 10].
For each edge, let ρst ∈ [0, 1] be an associated edge weight. Denot-
ing by Mts(xs) the message vector passed from node t to node s,
the reweighted sum-product update equations (up to normalization)
are given by

Mts(xs)←
�
x′

t

exp � θst(xs, x
′
t)

ρst
+ θt(x

′
t) � �u∈N(t)\s

[Mut(x
′
t)]

ρut

[Mst(x′t)]ρst
,

(2)
where N(t) denotes the neighbors of node t in the graph. Setting
the edge weights ρst = 1 for all edges recovers the standard sum-
product updates. When the updates converge, the messages are used
to compute (approximate) marginal probabilities τs at each node via

τs(xs) ∝ exp {θs(xs)} �
t∈N(s)

[Mts(xs)]
ρst . (3)

Of interest is under what conditions the message updates (2) are
guaranteed to converge.

3. CONVERGENCE ANALYSIS

In this section, we describe and sketch proofs on our main results
on the convergence properties of the reweighted sum-product up-
dates (2). For simplicity in exposition in this short report, we re-
strict our results to the case of binary random variables (i.e., X =
{−1, 1}), but note that our analysis can be extended to more gen-
eral spaces. In the binary case, each singleton potential θs(·) can
be parameterized by a single real number, which we denote θs for
convenience. Similarly, the pairwise potential θst(·, ·) can be pa-
rameterized by a single real number θst.

3.1. Statement of main results

Our convergence analysis is based on establishing that, under suit-
able conditions, the reweighted updates (2) specify a contractive
mapping in the �∞ norm. The contraction coef cient K(G; θ; ρ)
that emerges from our analysis is de ned by

max
(s,t)∈E �� �

u∈N(t)\s
ρut

exp( 2θut
ρut

)− 1

exp( 2θut
ρut

) + 1
+ (1− ρts)

exp( 2θst
ρst

)− 1

exp( 2θst
ρst

) + 1 �	 .

(4)
With these de nitions, we have:

Theorem 1. For an arbitrary pairwise Markov random eld, the
conditionK(G; θ; ρ) < 1 is suf cient for convergence of the reweighted
sum-product updates (2).

If we specialize this result to the case of uniform edge weights ρst = 1,
which corresponds to the standard sum-product updates, then we re-
cover previous results [6, 8] as a corollary. Moreover, it is worth
noting that Theorem 1 is a somewhat conservative condition, in that
it requires that the message updates be contractive at every node of
the graph, as opposed to requiring that they be attractive in an aver-
age sense. For homogeneous models (in which θs = θ and θst = η
are constant across nodes and edges, and each node has degree d),
we provide a sharpened analysis of convergence properties:

Theorem 2. For any homogeneous binary model on a d-regular
graph with arbitrary choice of (θ, η) (node and edge potentials), the
reweighted updates have a unique xed point and converge for all
homogeneous edge weights ρ such that (ρd− 1) ≤ 1.

Note that as a corollary, for the special setting ρ = 1—the choice
corresponding to the standard sum-product algorithm—then we re-
cover the known result that sum-product converges for any single
cycle graph (d = 2). For ρd > 2, the updates may have multiple
xed points, but this depends on the choice of (θ, η), as we discuss
in more detail in the sequel.

3.2. Proof of Theorem 1

We begin by re-writing the message update equation (2) in a form
more amenable to analysis. For each edge (s, t), de ne the log mes-
sage ratio zts = log Mts(1)

Mts(−1)
. It is equivalent to update these log

ratios using the update function Fts : R
2|E| → R, de ned by

log

exp 
 θst
ρst

+ θt + ρst( �
v∈N(t)

zvt)− zst � + exp 
 −θst
ρst
− θt �

exp 
 −θst
ρst

+ θt + ρst( �
v∈N(t)

zvt)− zst � + exp 
 θst
ρst
− θt � .

(5)
We begin with a lemma required in proving the theorem:
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Lemma 3. The partial derivative of F can be bounded as follows:
for u ∈ N(t)\s, we have

|∂Fts

∂zut
(z)| ≤ ρut|

exp( 2θut
ρut

)− 1

exp( 2θut
ρut

) + 1
| (6)

whereas for edge (s, t), we have

|∂Fts

∂zut
(z)| ≤ (1− ρst) |

exp( 2θst
ρst

)− 1

exp |( 2θst
ρst

) + 1
|. (7)

The proof, omitted due to space constraints, is based on a Taylor
series expansion, and some analysis to bound the second derivative
term. Turning to the proof of Theorem 1, it is based on analyzing the
evolution of the vector z ∈ R

2|E| of log likelihood ratios associated
with edges of the graph (one for each edge direction).

Lemma 4. Consider a sequence of iterates {zm} generated by ap-
plying the update functions {Fts} in parallel to each edge. Let z∗
be a xed point of these updates, and letΔm = zm − z∗ be the dif-
ference at iterationm. Then for each edge (s, t) ∈ E, the following
inequality holds at each iteration:

|Δm+1
ts | ≤

�
u∈N(t)\s

ρutLut|Δm
ut|+ (1− ρts)Lst|Δm

st|. (8)

where for edge (u, v), the constant Luv : = | exp(
2θuv
ρuv

)−1

exp |( 2θuv
ρuv

)+1
|.

Proof. Using the facts that zm+1 = F (zm) and z∗ = F (z∗) (since
z∗ is a xed point), we have for each edge (t, s) ∈ E:

|Δm+1
ts | = |Fts(z

m)− Fts(z
∗)|

= ������
�

u∈N(t)

∂Fts

∂zut
(αzm + (1− α)z∗) (zm

ut − z∗ut) ������≤
�

u∈N(t)
����
∂Fts

∂zut
(αzm + (1− α)z∗) ���� |Δ

m
ut| ,

where α ∈ (0, 1). (In this second equality, we have applied the
mean value theorem to Fts.) Now applying our bounds on partial
derivatives from Lemma 3, we obtain that

|Δm+1
ts | ≤

�
u∈N(t)\s

ρutLut|Δm
ut|+ (1− ρst)Lst|Δm

st|

as claimed.

With this lemma in hand, we have the necessary ingredients to
prove Theorem 1. From the error recursion (8), we have

‖Δm+1‖∞ ≤ max
(t,s)∈E �� � �

u∈N(t)\s
ρutLut + (1− ρst)Lst � �� ‖Δm‖∞

= K(G; θ; ρ) ‖Δm‖∞.

Consequently, if K < 1, then the mapping F : R
2|E| → R

2|E| is
strictly contractive in the �∞-norm, which establishes the claim by
standard xed point results [14].

3.3. Proofs for homogeneous case

In the homogeneous Ising model, the edge weights θst are equal to a
common value η, and similarly the node parameters θs are all equal
to a common value θ. Under these assumptions and the d-regularity
of the graph, the message-passing updates can be completely char-
acterized by a single log message z = log M(1)/M(−1) ∈ R, and
the update

F (z; η, θρ) = log 	 exp(−η
ρ
− θ) + exp( η

ρ
+ (ρd− 1)z) + θ

exp( η
ρ
− θ) + exp(−η

ρ
+ (ρd− 1)z) + θ


 .(9)

We analyze the behavior of the updates zm+1 = F (zm) by suitably
controlling the derivative of F with respect to z. A straightforward
calculation yields that F ′(z) = (ρd− 1)(a− b) where

a =
exp( η

ρ
+ (ρd− 1)z + θ)

exp(−η
ρ
− θ) + exp( η

ρ
+ (ρd− 1)z + θ)

(10a)

b =
exp(−η

ρ
+ (ρd− 1)z + θ)

exp( η
ρ
− θ) + exp(−η

ρ
+ (ρd− 1)z + θ)

(10b)

Note that we have 0 < a, b < 1 and |a − b| < max{a, b}, from
which we obtain

|F ′(z; η, θ)| ≤ |(ρd− 1)|max{a, b} ≤ |(ρd− 1)|.
From this bound, we conclude that if 0 ≤ (ρd − 1) < 1, then
|F ′(z)| < 1 for all z ∈ R. From this fact, it follows that the update
is a contraction on R, and hence has a unique xed point [14]. In the
boundary case when (ρd − 1) = 1, the xed point equation (9) has
only one valid root. Moreover, the derivative F ′(z) remains strictly
less than one for all nite η and θ, so that we are again guaranteed
uniqueness and convergence of the updates. (We omit the proofs of
these claims due to space constraints.)

Finally, when (ρd − 1) > 1, the update equation (9) may have
more than one xed point, depending on the choice of η and θ. In-
deed, for a xed setting of the node potential θ, it is possible to plot
the critical value of η for which the second xed point appears. For
a d-regular graph with d = 4, Figure 2(a) provides a number of
different curves, each corresponding to a different θ, showing how
this critical value of η changes as the edge weight parameters is de-
creased from ρ = 1 (corresponding to the ordinary sum-product
algorithm) to the critical value ρ = 1/2 (where ρd − 1 = 1). Note
that as one corner case, we recover the classical result that for θ = 0,
multiple xed points appear in the ordinary sum-product algorithm
as soon as η ≥ ηcrit ≈ 0.3466.

4. EXPERIMENTAL RESULTS

In this section, we present the results of experimental simulations to
illustrate and support our theoretical ndings. The simulations were
applied to the Ising model, obtaining by the potential function set-
tings θs(xs) = θsxs and θst(xs, xt) = θstxsxt in equation (1).
The numbers parameterizing the node potentials, θs, were chosen
uniformly from [0.05, 0.5], and the edge potentials, θst, were cho-
sen uniformly from [0.01, 1]. The simulations were carried out for
different values of the edge weights ρ in the reweighted sum-product
algorithm; however, so as to appropriately narrow the space, we re-
stricted attention to the case where the value of ρ is the same for all
edges. Due to space constraints, here we show only results for the
lattice with n = 144 nodes, and ρ = 0.5. Figure 2(b) compares the
convergence rate as predicted by Theorem 1 vs. the true convergence
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Fig. 2. (a) Plots of the appearance of multiple xed points versus η and ρ. Each curve shows, for a xed node potential θ, the critical
value of ηcrit at which multiple xed points occur, for edge weights ranging from ρ = 1 (ordinary sum-product) down to ρ = 1/2.
(b) The rate of convergence of the reweighted sum-product algorithm as compared to the rate predicted by Theorem 1.

rate. We have plotted log |zm− z∗|1 vs. the number of iterationsm.
In this setting, z∗ is the xed point of the reweighted sum-product
algorithm, and zm the message vector at the mth iteration. As il-
lustrated by Figure 2(b), the true convergence rate is faster than the
predicted value by Theorem 1; this nding both validates our result,
and reveals that our analysis appears to be overly conservative (as
discussed earlier).

5. CONCLUSION

Many signal processing applications make use of graphical models,
which require ef cient methods for computing approximate marginal
probabilities over subsets of nodes in the graph. For general graphs,
the problem of marginalization is computationally intractable due
to the existence of cycles in the graph. This dif culty motivates
the use of approximate message-passing algorithms, including the
sum-product algorithm and its variants. In this paper, we studied
the convergence and stability properties of the family of reweighted
sum-product algorithms [9, 10, 12]. For homogenous models, we
provided a complete characterization of the potential settings and
message weightings that guarantee uniqueness of xed points, and
convergence of the updates. For more general inhomogeneous mod-
els, we derived a set of suf cient conditions that ensure convergence,
and provide estimates of rates. We provided simulation results to
complement the theoretical results presented.
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