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ABSTRACT 

We consider the problem of deriving compressed perceptual 
representation of multivariate time series and using it for 
efficient indexing and similarity search. Our algorithm is 
based on the identification of perceptual skeletons in 
multidimensional space and the use of these 
“simplifications” in similarity measurements. We illustrate 
the performance of the algorithm in a financial modeling 
application. Our results indicate that the skeleton 
representation outperforms the traditional approaches and 
is robust enough to be used even with the simplest distance 
metrics. 

 
Index Terms— indexing, time-series, matching 

1. INTRODUCTION 

A large portion of the digitally stored data are in form of 
a time series, and the ability to efficiently search and 
organize such data is of growing importance in many 
applications. As a result, a significant effort has been 
directed towards developing methods that will enable 
computers to assist users in performing tasks such as: “find 
companies with similar stock prices”, “find portfolios that 
behave similarly”, “find products with similar sell cycles”, 
“cluster users with similar credit card utilization”, “search 
for music”, etc. Prior work includes the application of the 
Discrete Fourier Transform, Discrete Wavelet Transform, 
Principal Component Analysis or Linear Predictive Coding 
cepstrum representation to reduce sequences into points in 
low dimensional space and the use of the Euclidean distance 
between two sequences as a measure of similarity [1]-[5]. 
However, there are many similarity queries where Euclidean 
distances fail to capture the notion of similarity. A concept 
that two series should be considered similar if they have 
enough non-overlapping time-ordered pairs of similar 
subsequences has been explored in [8]. Rafiei et al used a set 
of linear transformations on the Fourier series representation 
of a sequence as a basis for similarity measurement [6], 
while Yi et al used the time warping distance [7]. A special 
class of problems is the analysis and classification of 
multivariate time series. Examples include 
electroencephalograms (where measurements are recorded 
up to dozens of channels), weather data (with daily 
measurements of temperature, humidity, atmospheric 
pressure and wind), and stock market portfolios (with 

multiple stocks tracked over a period of time). In [13] 
Taniguchi showed that similarities and differences between 
multivariate stationary time series can be characterized in 
terms of the structure of the covariance or spectral matrices. 
Huan et al proposed using the library of smooth localized 
complex exponentials to extract computationally efficient 
features of nonstationary time series [14]. A separate area of 
research focused on the design of feature sets that will allow 
for more effective and “perceptually tuned” representation 
of time series based on the extraction of key features, event 
detection, and extraction of important points [9]-[12]. These 
techniques are especially interesting as they attempt to 
capture the notion of similarity from the perspective of 
human observer. However, most of these perceptual 
techniques have difficulties handling multivariate data. This 
paper considers a problem of deriving a simple, compressed 
perceptual representation of multivariate time series, and 
using it as a basis for efficient indexing and search.  

2. OVERVIEW OF THE WORK 

Algorithms that attempt to capture some elements of 
human perception have often showed excellent results in 
many applications. When assessing similarity, humans mine 
visual data extensively to construct a representation that 
captures the most important aspects of a signal, the nature of 
the application and the task that needs to be achieved. For 
example, humans are very good at constructing different 
representations of an object, simplifying them by “picking” 
the most important characteristics, and using these 
“simplifications” to derive similarity judgments. Therefore, 
at the core of any similarity task is the computation of a 
perceptual skeleton, a set of points we “care about”, and 
using them in the matching task. Although such a process is 
difficult to generalize, by including its key steps into a 
matching algorithm one can greatly improve the accuracy or 
relevance of retrieved results. Our methodology attempts to 
follow this process. We propose a framework for similarity 
measurement of time domain signals with multiple 
attributes. The first step in our methodology involves 
transforming signals into a space with a metric (constructing 
the representation), where we can perform operations such 
as measuring distances between different points of the signal 
or identifying local maxima. We then compute the skeleton 
of a signal as a set of perceptually important points in that 
space (constructing the skeleton), and use a distance 
between the two skeletons as a similarity measure (similarity 
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measurement). 

3. PRELIMINARIES 

Let us consider two discrete time domain signals, 
)](,...),([ 1 xNtt xxX = , and )](,...),([ 1 yNtt yyY = , of length 

xN , and yN , respectively. Each time instance is described 
with M attributes, )](,),([)( 1 txtxt M�=x , and 

)](,),([)( 1 tytyt M�=y . Usually the attribute vectors 
represent different measurements, which are often either 
strongly correlated, or include features that are distinctly 
different in nature so that a distance metric between two 
attribute vectors cannot be defined naturally. Therefore, as a 
first step we apply a de-correlating transform )(⋅F  and 
project X  and Y  onto a K-dimensional metric space, S 

)](,),([)( 1 xNttF xx ffXFx �== ,      

)](,),([)( 1 yNttF YYY ffYF �==      (1) 

where, )](,),([)( 1 tftft K�=f  and MK ≤ . We will also 
assume that S is a normed linear space with a norm, |||| ⋅ , and 
metric ||||),( YXYX ffff −=d  defined by the norm. Note 
that the goal of the mapping is not dimensionality reduction 
(although this is a useful step when dealing with highly 
correlated variables), but the projection of a signal into a 
space where a metric can be defined more naturally. This 
metric will then constitute a local similarity metric, used to 
identify perceptually skeletons, compute the compression 
rate and construct a global similarity metric (i.e. a true 
similarity distance between the two signals).  

a)      b)      c) 
Figure 1: An illustration of perceptually important points and 
perceptual skeletons for a one-dimensional signal. a) Original 

signal, b) perceptually important points, and c) perceptual skeleton 
obtained by connecting the PIPs. 

4. COMPUTING PERCEPTUAL SKELETONS 

A body of research in cognitive psychology indicates 
that humans and animals depend on “landmarks” and 
“simplifications” in organizing their spatial memory. A 
subject asked to look at Fig. 1a and duplicate the picture, 
will typically memorize only the key turning points, as in 
Fig. 1b, and then recreate the picture by connecting these 
few points, Fig. 1c. This idea of perceptually important 
features has been explored in a variety of applications. One 
of the first uses of this concept was in reducing a number of 
points required to represent a line in cartoon making [15]. 
Similar ideas have also been explored independently in [11], 
[12], [16]. Here, we define a perceptually important point 
(PIP) as a local maximum of the transformed signal, F  
(depending on the nature of the problem, one can use 

maxima of different orders). At the coarsest level, each point 
in F  represents a PIP. The idea behind the perceptual 
skeletons is to discard minor fluctuations and keep only 
major maxima. One possible PIP identification procedure 
for one-dimensional signals is described in [16]. Here we 
refine the procedure and extend it to handle multi-
dimensional feature representations. We start with the 
transformed signal )](,...),([ 1 Ntt ffF = , and select the first 
and the last point as the first two PIPs. Every next PIP is 
then identified as a point with the maximum distance to its 
two adjacent PIPs. Fig. 2a illustrates this procedure in one 
dimensional case, while Fig. 2b represents a generalization 
to multiple dimensions. The PIP identification procedure can 
be then described as follows: 

)]1(,),1(),1([)](,1[PIP 12111 +== Kzzzt �f , 

)](,),(),([)](,[PIP 1212 NzNzNztN KN +== �f , (2) 

)](,),(),([)](,[PIP 1213 izizizti Ki +== �f , 

where ))(),((maxarg ii
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is obtained by projecting the point )( itf  onto a line, 

21 PIP,PIP� , which connects the two neighboring PIPs (as 
illustrated in Fig. 2). A line in K+1-dimensional space can 
be represented as  

111 −−− += iiii nzmz , 1,,2 += Ki � , 

hence, the line connecting PIP1 and PIP2 is defined by:  
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From now on we will assume 2L  norm to be the local 
similarity metric in the space – in that case, for every point 

)( itf , )( itfn can be found by maximizing:  

∑
+

=
−==
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1
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j
jjii iznizttdD fnf ,  

subject to: 111 )()( −−− += ijij niznmizn , 1,,2 += Ki �  

(i.e. subject to: 21 PIP,PIP)( �∈itfn ). Using Lagrange 
multipliers ( Kλλ ,...,1 ) to solve this problem, we obtain 

)( itfn  as a solution to the following system of equations 
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jjjj niznmizn =−+ )()(1 , Kj ,,1 �=  

The identification process continues until a distortion 
measure (as defined below) is satisfied, or the number of 
PIPs is equal to the length of the sequence. The local 
similarity measure d can be also used as a distortion 
measure. Given the transformed sequence F  and the 
perceptual skeleton, )](,),([ 1 Nsss tt ffF �= , obtained by 
connecting the PIPs along the original time axis, the 
distortion rate, dr, can be computed as: 

∑
=
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Figure 2: Identification of perceptually important points for: one 
dimensional case (top), and multivariate time series (bottom). 

5. SIMILARITY MEASUREMENTS 

Once the signals X and Y are reduced to their perceptual 
skeletons XFs  and YFs  the final step is to compute the 
similarity between the simplified representations. We will 
first consider the local similarity metric, d, as a global 
distance measure. However, as it is often reported that 
Minkowski-based metrics have drawbacks in comparing 
time series. Therefore, we will also consider multivariate 
dynamic time warping (DTW) as an alternative measure [7]. 
We start with the perceptual skeletons 

)](,),([ 1 xNss tt XX ff �  and )](,),([ 1 yNss tt YY ff � , where 
xN  and yN  are the number of points in each skeleton, 

respectively. To compute the similarity measure between the 
skeletons, we first construct an yx NN ×  matrix M, where 

))(),((),( jsis ttdjiM Yff X= , and d is the local similarity 
metric (as defined in Section 3). The warping path, 

LwwwW ,,..., 21= , where ll jiw ),(=  is a contiguous set of 

matrix elements that defines a mapping between XFs  and 
YFs , subject to: boundary conditions )1,1(1 =w  and 

),( yxL nnw = , continuity constraint ),(),( 1 bawbaw kk ′′=⇒= − , 
where 1≤′−aa  and 1≤′−bb , and monotonicity constraint 

0≥′− aa  and 0≥′− bb . As there are many warping paths 
that satisfy these conditions, we are interested in finding the 
path that minimizes the warping cost 

∑
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=
L

l
l

W
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1
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6. EXPERIMENTS AND RESULTS 

We will illustrate the application and the performance of 
the algorithm in a financial modeling application, and use 
the dataset consisting of 1996-2006 daily stock prices for the 
DOW Jones Industrial (DJI) index. The index includes 32 
stocks. We first illustrate the application of the algorithm 
using the simple one dimensional case. We select a stock 
and time interval of interest and search for the stocks that 
performed similarly in the same time period. Fig. 3 shows a 
retrieval example using the proposed method and the 
Euclidean distance between the original signals. 

Figure 3:  A retrieval example for one dimensional case. The query 
is the stock price series for American Express, in a 3 month period 

starting on 11/14/2005. Using the skeleton representation we 
obtain JP Morgan as the closest match (both using the Euclidean 

distance and DTW). The closest match using the Euclidean 
distance on the original time series is Hewlett Packard.  

We will now demonstrate the application of the method 
in a multi-dimensional setting by considering the following 
model of the stock market. We will assume a market with  Q 
assets. Market vectors )](,),([)( 1 tptpt Q�=p  and 

)](,),([)( 1 trtrt Q�=r  are vectors of nonnegative numbers 
representing asset daily prices and returns (price relatives) 
for every trading day. Let us assume the following simple 
sequential “momentum” investment strategy. An investor 
starts investing at time oT  and rebalances her portfolio 
every rT  days. The investor can invests all her wealth into 
only one stock. Let oS  denote investor’s initial capital. 
Then, at the end of the first trading period the investor’s 
wealth, 1S , and return, 1R ,become: 
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where i is the index of the asset selected for investment. In 
order to select the investment for the next trading period, the 
investor will consider the evolution of the market over hT  
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days prior to the decision time, which is represented by a 
sequence of price vectors )]1(,),([)( −−= tTtt h ppP � . The 
investor will analyze the stock market history, find a period 
when the market behaved similarly to the current one, 
identify the asset that had the highest return in the given 
period and select that asset as the new investment. In other 
words, at the beginning of every trading period, it , the 
investor finds the index of the new investment as 

))(),((minarg)(
1,,1

ji
tTt

ttDiind
ihj
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−+=

=
�

 

where 1,...,1 −+ ih tT is the “market history” prior to it . The 
investor’s return after N trading periods then becomes 
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The sequence of price vectors )(tP  is a Q-dimensional 
time series, where each point represents a market vector at 
time t. Thus, we will use our algorithm to find the most 
similar past market conditions, and will evaluate the 
performance of our method by comparing the achieved total 
return R, to the returns obtained by using Euclidian distance 
(ED) and dynamic time warping (DTW) as similarity 
metrics between the original signals. We will also compare 
the performance of the perceptual skeletons with DTW as 
similarity metric (PS+DTW), with the Euclidean distance as 
similarity metric (PS+ED). Instead of the distortion rate, we 
control the quality of the representation via the parameter 

minSL , which defines the minim length of a segment 
between two PIPs. Results for different choices of 

),,( minSLTT hr  are given in Table 1.  

TABLE 1: THE RESULTS OF THE MOMENTUM INVESTMENT STRATEGY FOR 

DIFFERENT CHOICES OF REBALANCING PERIOD, Tr, MARKET HISTORY, Th, 
AND SLmin. WE USE THE 1996-2006 PRICES FOR DJI INDEX, THUS Q=32 IN 

OUR CASE. 

(Tr,Th,SLmin) PS+DWT PS+ED DWT ED 

(40,90,10) 2.28 2.28 1.82 2.09 

(20,90,10) 2.01 1.92 1.82 1.34 

(15,90,10) 3.18 3.18 1.85 3.09 

(90,90,5) 2.17 2.17 1.26 2.17 

(90,90,15) 2.36 2.36 1.26 2.17 

(90,90,20) 1.81 1.81 1.26 2.17 

(120,120,3) 1.57 1.57 1.96 1.57 

(120,120,5) 2.36 2.36 1.96 1.57 

(120,120,15) 2.60 2.60 1.96 1.57 

(120,120,20) 2.17 2.17 1.96 1.57 

 
The skeleton based representation clearly outperforms 

the other methods. Furthermore, when using perceptual 
skeletons, both DTW and ED generate the same returns 
indicating that the perceptual representation is robust with 
respect to the selection of distance measures. We also 
observe how the performance of the skeleton representations 

depends on the compression factor and deteriorates as the 
representation becomes to coarse (large minSL , resulting in 
large distortion rates), or when the simplification is 
insufficient (too small minSL , yielding a signal 
representation that is similar to the original signal), and it is 
of interest to study these relationships in more detail.  
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