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ABSTRACT

In this paper, a new quantity called symmetric information 
potential (SIP) is proposed to measure the reflection 
symmetry and to estimate the location parameter of 
probability density functions. SIP is defined as an inner 
product in the probability density function space and has a 
close relation to information theoretic learning. A simple 
nonparametric estimator directly from data exists. 
Experiments demonstrate that this concept can be very 
useful dealing with impulsive data distributions, in 
particular, -stable distributions.  
 

Index Terms— Symmetric distributions, information 
theoretic learning, robust statistics
 

1. INTRODUCTION 
 
A fundamental task in statistical analysis is to characterize 
the location and variability of a data set. Further 
characterization of the data includes skewness and kurtosis. 
In this paper, we mainly address two of these important 
issues: location and skewness. 

The estimation of a location parameter is to find a 
typical or central value that best describes the data. For 
univariate data, mean, median, and mode are three common 
methods [9]. However, if the data is Cauchy distributed, the 
mean becomes useless, because collecting more data does 
not provide a more accurate estimate [9]. 

Another important characteristic of a data distribution is 
skewness, which is a measure of symmetry. A distribution is 
symmetric if it looks the same to the left and right of the 
center point. For the data set 1{ }N

i ix , the skewness is defined 
as 
 3 3

1
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ii
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where x  and s are the mean and the standard deviation of 
the data. By definition, the skewness measures symmetry 
with respect to the mean. If the mean estimate is 
meaningless as in the Cauchy distribution, the skewness is 
also meaningless although the Cauchy distribution is 
obviously symmetric. In this paper, we try to solve this 
dilemma by defining a new concept of center and a new 
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symmetry measure of data distributions based on 
information theoretic learning [1].  

The organization of the paper is as follows. In section 
2, a brief review is given about information theoretic 
learning. Then the definition and properties of symmetric 
information potential (SIP) are presented, based on which 
the Euclidean symmetry measure, Cauchy-Schwartz 
symmetry measure and the reflection point are defined in 
section 3. Possible applications are discussed in section 4. 
Finally, section 5 summarizes the main conclusions. 

 
2. INFORMATION THEORETIC LEARNING 
 

Given i.i.d. samples 1{ }N
i ix  drawn from ( )Xf x , the Parzen 

estimator [2] of the PDF is 
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where ( )iG x x  is the Gaussian kernel and  is the 
kernel size. 
 2 2( ) exp( ( ) / 2 ) / 2i iG x x x x  (3) 

Renyi’s quadratic entropy of a random variable X with 
PDF ( )Xf x  is defined by  

 2
2 ( ) log ( )XH X f x dx  (4) 

The argument of the log function in (4) is called information
potential (IP) since the PDF estimated with Parzen kernels 
can be thought to define an information potential field over 
the space of the samples [3]. A non-parametric estimator of 
the IP (and thus of quadratic Renyi’s entropy) directly from 
samples is obtained through (2) 
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3. SYMMETRIC INFORMATION POTENTIAL 

3.1. Definition 
Definition: Suppose the PDF of a random variable X is 

( )Xf x . Symmetric Information Potential (SIP) of X is 
defined as  
 ( ) ( ) ( )X XSIP X f x f x dx  (6) 

With i.i.d. samples 1{ }N
i ix  drawn from X, a nonparametric 

estimator is obtained as 
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Comparing (7) with (5), we see that SIP is very similar to IP 
and furthermore when the distribution is symmetric, 
i.e. ( ) ( )X Xf x f x , SIP reduces to IP by definition. 
 
3.2 Properties 
Let X be a random variable. 
Property 1: ( ) 0SIP X . 
Property 2: ( ) ( )SIP X IP X . Equality holds if and only if 

( ) ( )X Xf x f x .  
Proof: By Cauchy-Schwartz inequality 
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Equality holds when ( ) ( )X Xf x af x , where a  is some 
real positive constant. Since  
 ( ) ( ) 1X Xf x dx f x dx  (9) 
a  can only be 1. This completes the proof. 
Property 3: Define a new random variable 1 2Y X X , 
where 1X  is independent of 2X  but they have the same 
PDF ( )Xf x . SIP(X) equals the probability density of 0Y . 
Proof: Since 1X  and 2X  are independent, the PDF of Y is 

 ( ) ( ) ( )Y X Xf y f x f y x dx . (10) 
Therefore, 
 ( ) ( ) ( ) ( 0)X X YSIP X f x f x dx f y . (11) 
This completes the proof. With only the data available and 
by using (2) in (10), we have 
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This is exactly the Parzen estimator of ( )Yf y if 

, 1{( )}N
i j i jx x  are regarded as the realizations drawn from Y. 
 

3.3. Reflection Symmetry Measure 
It is natural to measure symmetry of a data distribution by 
comparing its PDF ( )Xf x  with its mirror image ( )Xf x  
since this is the fundamental definition of the reflection 
symmetry. If we treat ( )Xf x  and ( )Xf x  as two points in 
the PDF space, their Euclidean distance is 
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By the properties of SIP, we see that  
(1) 0 2 ( )EDS IP X ; 

(2) 0 ( ) ( )ED X XS iff f x f x .  

EDS  is called the Euclidean Symmetry measure. Another 
way to define ‘distance’ in a vector space is to measure the 
angle between two vectors. Therefore, the Cauchy-Schwartz 
symmetry measure SCS is 
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This is a normalized version of SIP and it denotes the cosine 
value of the angle between ( )Xf x  and ( )Xf x . CSS  has the 
following properties: 
(1) 0 1CSS ; 
(2) 1 ( ) ( )CS X XS iff f x f x .  

EDS  and CSS  are almost equivalent. Most importantly, 
they possess nice non-parametric estimators directly from 
data whereas other forms of divergence such as Kullback-
Leibler are computationally expensive. Practically CSS  is 
more appropriate than EDS  since it removes the effect of the 
‘norm’ of the PDF. 
 
3.4. Reflection Point 
In the previous definitions, we set the reflection point at the 
origin by default. However, it would be appealing in some 
cases to have the symmetry as an internal property of the 
data distribution and independent of the external coordinate 
system. As defined in (1), the skewness measures symmetry 
with respect to the data mean, and is therefore shift-
invariant. By analogy, the center of the data can be first 
estimated with a subsequent shift to the origin. However, 
this means our definition of symmetry depends on the 
particular choice of which point is the center and in practice 
depends on what kind of method is used to estimate it. 
Intuitively, the concepts of reflection point and reflection 
symmetry are co-dependent. Further, it is logically sound to 
define the reflection point, with respect to which the 
maximal symmetry is achieved. The reflection point Rp  can 
be used to represent the ‘center’ of the data distribution. 

Assume we shift the data by t. The CSS  becomes 
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The denominator, i.e. the IP, is shift-invariant and the 
numerator turns out to be ( 2 )Yf y t . As a result, the 
reflection point is defined as 
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Yt

Rp f x f t x dx

f y t
 (16) 

Consequently, finding the reflection point of ( )Xf x  is 
equivalent to finding the main mode of ( )Yf y . Since Y is 
the sum of two independent random variables, Y would be 
‘closer’ to the normal distribution than X by the central limit 
theorem. Thus it is advantageous to deal with ( )Yf y  instead 
of ( )Xf x  except for the increasing computation. Finding the 
main mode of  ( )Yf y  can be accomplished by the mean 
shift algorithm or by gradient methods [4]. 

 
4. APPLICATIONS 

4.1 Measuring Symmetry of data distributions 
In the first example, we compare our method with skewness 
in assessing symmetry of data drawn from Cauchy, 
Laplacian and exponential distributions (Table I). 

 
TABLE I 

DISTRIBUTIONS USED IN THE FIRST EXAMPLE 

Distribution PDF 
Cauchy 2( ) 1/ (1 )f x x  

Laplacian ( ) exp( | |) / 2f x x  
Exponential ( ) exp( ), 0f x x x  

2-Cauchy 
Mixture 

2 2

1 1 1 1( )
2 (1 ( 2) ) 2 (1 ( 2) )

f x
x x

 

 
For each distribution, 1000 points are drawn to estimate the 
mean, skewness, Rp  and CSS . 100 Monte Carlo realizations 
are run for each distribution. After that, we calculate the 
average and the standard deviation of these estimates. All 
distributions and their parameters used in the simulation are 
listed in Table I. The kernel size is chosen by the 
Silverman’s rule [5]. The results are summarized in Table 
II. CSS  has much smaller estimation variance than the 
skewness. In the case of symmetric, heavy-tailed 
distributions like Cauchy and Laplacian, Rp  also provides a 
much more accurate estimate of the center than the mean. In 
most cases, the skewness has such a large variance that its 
estimate is uninformative. The reason why CSS  is very 
suitable to describe impulsive distributions is beyond the 
scope of this paper (see [8]). 

The -stable distributions are a family of heavy-tailed 
distributions widely used in financial analysis [6]. The -
stable distribution requires four parameters for complete 
description: an index of stability (0,2] , a skewness 
parameter [ 1,1] , a scale parameter 0  and a location 
parameter , denoted as ( , , )S . When 2 , the 
Gaussian distribution results. The Cauchy distribution is a 
special case when 1 and 0 . When 2 , the 

variance is infinite and the tails are asymptotically 
equivalent to a Pareto Law. The estimation of stable law 
parameters is in general severely hampered by the lack of 
known closed-form density functions. As far as we know, 
simple descriptors for -stable distributions are still lacking 
due to the flat tails and asymmetry. In this example, we 
show that the newly defined SCS can be used to characterize 
the skewness of these distributions. In this example, we fix 
three parameters 0.8 , 1 , 0  and vary  from 0 
to 0.9. For each , 2000 data are generated to estimate the 
skewness and SCS. 100 Monte Carlo simulations are run so 
that the average and the standard deviation are calculated 
for both estimates (Fig. 1). The skewness is estimated by 
two ways: one is with entire data and the other with 5% data 
trimmed off. As we see, a smooth monotonic curve is 
obtained between SCS and  whereas the skewness is 
almost uninformative.  
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Fig.1. Estimates of CSS  and skewness with different  

 
4.2 Signal detection in symmetrically distributed noises 
In this example, we utilize the property of Rp  in a signal 
detection problem. In a digital communication system, let S 
and R be respectively the transmitted signal and the 
received signal corrupted by the additive noise N. 
 R S N  (17) 

Suppose iS s  which is either 0 or 1 with equal 
probably. The noise can be any symmetric distribution with 
reflection point at the origin. 1.2 (1,0,0)S  and 2-Cauchy 
mixture noises (in Table I) are used in this simulation. The 
signal-noise-ratio (SNR) is simply controlled by scaling the 
noise. When an interval of signal is observed, T samples are 
obtained, based on which a decision is made whether the 
transmission is 0 or 1. The mean square error criterion is 
commonly used while M-estimation is more effective in 
impulsive noises [7]. Assume the sampled received signal is 

1{ }T
t tr . For the Rp detection method, the following criterion 

is used 
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Decide if G r r G r r

Decide otherwise
 (18) 

We set T=20 and transmit 104 bits in each simulation to 
calculate the bit error rate (BER). Kernel size is set 
according to the Silverman’s rule. 
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Fig.2. Detection performance with -stable noise 
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Fig.3. Detection performance with 2-Cauchy mixture noise 

 
The noise power and trimmed MSE is estimated from 

5% trimmed data. As we see in Fig.3, the mode detection 

fails in the case of 2-Cauchy mixture because there is a dip 
in the noise PDF at the center. 

 
5. CONCLUSIONS 

In this paper, a new quantity Symmetric Information 
Potential (SIP) is proposed. Its mathematical meaning, 
probabilistic interpretation and relation to the information 
potential are presented. Based on this understanding, 
descriptors EDS , CSS  and Rp  are defined to quantify the 
reflection symmetry and to estimate the location parameter 
of data distributions. All these methods are non-parametric 
and robust so they are very useful to characterize impulsive 
data distributions. Examples demonstrate the newly 
proposed methods outperform the conventional mean and 
skewness in estimating the location parameter and 
quantifying symmetry in Laplacian, -stable and other 
mixture models. Future work includes the bias and variance 
analysis of the SIP, detailed parameter estimation methods 
for -stable distributions and its possible application in 
supervised learning.  
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TABLE II 
ESTIMATION RESULTS OF CAUCHY DISTRIBUTION 

Distributions data mean data skewness Rp  of data CSS  of data 
 average std average std average std average std 
Cauchy -2.7038 7.3509 -1.1888 24.037 -0.00073 0.04510 0.99951 0.00026 
Laplacian 0.0194 0.0534 0.00556 0.19704 -0.00448 0.02650 0.99634 0.00245 
Exponential 0.9969 0.0270 2.112 0.20936 0.48942 0.04184 0.84084 0.01616 
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