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ABSTRACT

An algorithm is proposed that can be used (i) to verify the va-
lidity of the asymptotic Cramér-Rao bound (CRB) for a nite
number of observations; (ii) to improve the CRB. It is derived
from the bre bundle theory of local exponential families devel-
oped by Amari and by Barndorff-Nielsen et al. The algorithm is
applicable to any regular estimation problem. As an illustration,
the problem of estimating the parameters of an AR model with
noisy observations is considered.

Index Terms— Asymptotic Estimation Theory, Exponential Fam-
ily, Cramér-Rao Bound, Factor Graph, Message Passing

1. INTRODUCTION

The (asymptotic) Cramér-Rao bound (CRB) is a widely used lower
bound on the mean square estimation error (MSE) [1]. It has been
computed in a wide variety of contexts ranging from digital com-
munications to signal, speech, and image processing, to compu-
tational neuroscience. In this paper, we address two questions:

1. how can the (asymptotic) CRB be improved?
2. how can one verify whether the (asymptotic) CRB is valid
for a given ( nite) number of observations and a given
signal-to-noise ratio?

The CRB is well known to be often loose at low signal-to-noise
ratios (SNR) and/or for a small number of observations; this ex-
plains our interest in the rst question. In order to motivate the
second question, we remind the reader of some well known facts.
For many estimation problems, the CRB is only valid in the limit
of an in nite number of observations (asymptotic CRB). Obvi-
ously, the number of observations is nite in practice, and often
researchers apply the asymptotic CRB while silently assuming
that the number of observations is suf ciently large. In practice,
it is important to know for which number of observations and in
which SNR region asymptotic CRBs are valid.
In earlier work [2], we have shown how the validity of asymp-
totic CRBs can be veri ed by means of higher-order asymptotic
estimation theory, which is a theory that leads to systematic im-
provements of the asymptotic CRB (see, e.g., [3, pp. 81–100]
and references therein). An alternative approach based on the
Barankin bound is presented in [4]. In [2], we applied the higher-
order asymptotic estimation theory for curved exponential fam-
ilies to the problem of phase and variance estimation. We ob-
tained higher-order corrections on the asymptotic CRB, and we
determined the SNR region in which the asymptotic CRB and its

corrections are valid. For the (toy) problem of joint phase and
variance estimation, the higher-order bounds are tractable. For
less trivial estimation problems (especially the ones that involve
hidden random variables), however, this is usually not the case.
In this paper, we propose an algorithm to compute intractable
higher-order corrections on the asymptotic CRB. The algorithm
is applicable to general (non-singular) statistical models, i.e., not
only to curved exponential families (as in [2]); the algorithm re-
mains practical for high-dimensional statistical models with hid-
den random variables. It is a natural extension of the method we
proposed in [5] to compute intractable CRBs. The algorithm is
based on the bre bundle theory of local exponential families de-
veloped by Amari [6] and by Barndorff-Nielsen et al. [8], which
is an extension of the higher-order estimation theory for curved
exponential families.
This paper is structured as follows. First, we review higher-order
estimation theory. In Section 3, we present our algorithm to
compute higher-order extensions of Cramér-Rao bounds. In Sec-
tion 4, we apply that algorithm to a generic state space model;
in Section 5, we provide numerical results for a particular state
space model, i.e., an autoregressive (AR) process with noisy ob-
servations.

2. REVIEW OF ASYMPTOTIC ESTIMATION THEORY

The asymptotic theory of estimation deals with the performance
of estimators in the limit of an in nite number of observations.
We rst brie y review rst-order asymptotic estimation theory,
whose main result is the standard (asymptotic) CRB. Then we
outline higher-order asymptotic estimation theory; we will closely
follow [3]. First we consider i.i.d. observations, then non-i.i.d.
observations (as in time series).

2.1. Independently Identically Distributed Observations

2.1.1. First-order asymptotic estimation theory

Let p(y;u) be a statistical model with random variable Y and
parameters u = u1, . . . , uM with ui ∈ R (for i = 1, . . . ,M ). We
consider the problem of estimating the parameter vector u from
N i.i.d. samples y1, . . . , yN of p(y;u). Let the function û

(
yN

)
be an estimator of u based on the observations yN �

= y1, . . . , yN .
We de ne the error matrix E(N)(u) as:

E(N)(u)
�

= EYN;U

[
(û

(
Y N

)
− u)(û

(
Y N

)
− u)T

]
. (1)
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A key player in rst-order estimation theory is the Fisher infor-
mation matrix F (u) given by [1]:

F (u)
�

= EY;U

[
∇u�(Y ;u)∇T

u �(Y ;u)
]
, (2)

where �(y;u)
�

= log p(y;u), and the expectation is with respect
to p(y;u). The following inequality holds (under certain regu-
larity conditions) for any consistent estimator (which in general
may be biased):

lim
N→∞

NE(N)(u) � F (u)−1. (3)

The inequality (3) (“asymptotic Cramér-Rao bound”) is the main
result of rst-order asymptotic estimation theory [1].

2.1.2. Higher-order asymptotic estimation theory

Higher-order asymptotic estimation theory deals with expansions
of the error matrix E(N)(u) as power series ofN−1/2:

E(N)(u) = N−1M (1)(u) +N−3/2M (2)(u)

+N−2M (3)(u) +O(N−5/2). (4)

The matrices M (i)(u) (i = 1, 2, . . . , 3) depend on the estima-
tor û(yN

1 ). A consistent estimator is said to be rst-order ef -
cient when its rst-order termM (1)(u) is minimal at all u among
all other consistent estimators. In a similar fashion, one de nes
higher-order ef ciency. Interestingly, a higher-order ef cient es-
timator is not only optimal with respect to the MSE but with re-
spect to any monotonic loss function [6]. For a rst-order ef-
cient estimator, the matrix M (1)(u) is given by the inverse of
the Fisher information matrix F (u) (cf. (3)). Expressions for the
minimal higher-order matrices M (i)

min(u) for i = 2, 3 have been
derived rst for curved exponential families [3] and later for gen-
eral probabilistic models, based on the bre bundle theory of lo-
cal exponential families [6] [8].
The curved exponential family is a natural extension of the ex-
ponential family. The latter is de ned as the set S of probability
models that can be written in the form

p(y; θ)
�

= exp
[
C(y) +

L∑
i=1

θiFi(y)− ψ(θ)
]
, (5)

where θ ∈ R
L, C(y) and Fi(y) are arbitrary functions of Y , and

ψ(θ) ensures that p(y; θ) is normalized [3]. Many common prob-
ability models are exponential families, e.g., the univariate and
multivariate normal distribution, the Poisson distribution, and the
binomial distribution. A curved exponential family is a set of
probability distributions that is smoothly embedded in an expo-
nential family [3]. LetM be a curved exponential family with
coordinate system u ∈ R

M ; the components of u are denoted by
ua (a = 1, . . . ,M ). Since the probability distribution parameter-
ized by u also belongs to the exponential family S, we may write
their coordinates as θ = θ(u). The probability distributions in
M may be written as

p(y;u)
�

= exp
[
C(y) +

L∑
i=1

θi(u)Fi(y)− ψ
(
θ(u)

)]
. (6)

In the following, we will use a new parametrization (“coordi-
nate system”) w = (u, v) for S, where the mapping θ(w)

�

=

θ(u, v) is supposed to be differentiable. The coordinates vκ (κ =
1, . . . , L−M) are chosen such that θ(u) = (u, 0).
It has been shown that M (2)

min(u) is zero for any model p(y;u),
in other words, rst-order ef ciency implies second-order ef -
ciency (but not third-order ef ciency) [3]. For curved exponen-
tial families, the minimal third-order matrix M3,min(u) may be
decomposed as a sum of two positive semi-de nite matrices [3,
p. 95]:

M3,min(u)
�

=
1

2

(
GM (u) + 2GE(u)

)
, (7)

with

[GM (u)]ab
�

=
∑
cdef

[HM (u)]acd[HM (u)]bef

·
[
F (u)−1

]
ce

[
F (u)−1

]
df
, (8)

[GE(u)]ab
�

=
∑

κλcdef

[HE(u)]κce[HE(u)]λdf [F (u, 0)]κλ

·
[
F (u)−1

]
cd

[
F (u)−1

]
ea

[
F (u)−1

]
fb
, (9)

where

[HM (u)]acd
�

=
∑

b

[FM (u)]cdb

[
F (u)−1

]
ba
, (10)

[HE(u)]κce
�

=
∑

λ

[FE(u)]ceλ

[
F (u, 0)−1

]
λκ
, (11)

and

[FM (u)]cdb
�

= EY;U

[
∂uc

�(Y ;u)∂ud
�(Y ;u)∂ub

�(Y ;u)
]

+ EY;U

[
∂uc

∂ud
�(Y ;u)∂ub

�(Y ;u)
]
, (12)

[FE(u)]ceλ
�

= EY;W

[
∂uc

∂ue
�(Y ;w)∂vλ

�(Y ;w)
]∣∣∣

w=(u,0)
.

(13)

The higher-order asymptotic theory for general models p(y;u)
is derived by rst approximating the model p(y;u) by a curved
exponential family in the neighborhood of some point ũ ∈ R

M .
Next, one applies the theory of curved exponential families (cf. (7)–
(13)), which leads to the following results [6] [8]: the higher-
order matrixM3,min(u) has again the form (7), and the term GM

in (7) is again given by (8), i.e., the expression (8) applies to
general probabilistic models; the term GE is obtained by apply-
ing the expression (9) to the curved-exponential approximation,
amounting to:

[
GE(u)

]
ab

=
∑
cdgh

[
F (u)−1

]
cd

[
F (u)−1

]
ag

[
F (u)−1

]
bh

·
(
[JE(u)]gchd − [F (u)]gc[F (u)]hd

−
∑
ef

[FE(u)]gce

[
F (u)−1

]
ef

[FE(u)]hdf

)
, (14)

where

[FE(u)]abc
�

= EY;U

[
∂ua

∂ub
�(Y ;u)∂uc

�(Y ;u)
]

(15)

[JE(u)]abcd
�

= EY;U

[
∂ua

∂ub
�(Y ;u)∂uc

∂ud
�(Y ;u)

]
. (16)

If p(y;u) is a curved exponential family, the expression (14) re-
duces to (9).
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2.2. Non-i.i.d. Observations

So far, we have assumed that the observations y1, . . . , yN are i.i.d.
An expansion similar to (4) has been derived in [9, Chapter 4] for
non-i.i.d. observations (as in time series, see Section 4 and 5).
That expansion involves certain limits as for example:

F1(u)
�

= lim
N→∞

1

N
EYN;U

[
∇u�

(
Y N;u

)
∇T

u �
(
Y N;u

)]
(17)

�

= lim
N→∞

1

N
F (N)(u). (18)

Limits as (17) are hard to compute (even numerically). Therefore,
we consider here an alternative expansion that does not involve
such limits and can be computed ef ciently:

E
(N)
min (u) = M

(1,N)
min (u) +M

(3,N)
min (u) +O(N−3) (19)

=
[
F (N)(u)

]−1
+

1

2

(
G

(N)
M (u) + 2G

(N)
E (u)

)
+O(N−3), (20)

where F (N), G(N)
M , and G(N)

E are by obtained from (2), (8), and
(14) respectively by replacing the loglikelihood �(y;u)with �(yN ;u).

3. GENERIC MONTE-CARLO ALGORITHM

We consider a stochastic model p(xN , yN ;u) with hidden ran-
dom variables XN = X1, . . . , XN , observed random variables
YN = Y1, . . . , YN , and parameters u = u1, . . . , uM . We wish
to compute the terms M (i,N)

min (u) (i = 1, 3) from the marginal
p(yN;u) de ned as

p(yN;u)
�

=

∫
xN

p(xN, yN;u)dxN . (21)

We follow the same approach as in [5]. The two termsM (i,N)
min (u)

(i = 1, 3) involve expectations with respect to p(yN ;u) (cf. (2));
we evaluate those expectations by Monte-Carlo simulations: we
draw samples from p(yN ;u) and compute the expectations by
averaging over those samples. The two terms also involve the
gradient ∇u�(y

N ;u) and Hessian ∇u∇T
u �(y

N ;u). The former
can be evaluated through the well-known equality

∇u�(y
N ;u) = EXN |YN;U

[
∇u�(X

N, yN ;u)
]
, (22)

where �(xN, yN ;u)
�

= log p(xN, yN ;u). Also for computing the
Hessian, we use the expression in the RHS of (22):

∇u∇
T
u �(y

N ;u) = ∇u EXN |YN;U

[
∇u�(X

N, yN ;u)
]
. (23)

The expressions at the RHS of (22) and (23) can often be com-
puted ef ciently, as we will brie y outline in the following sec-
tions.
In summary, the terms M (N)

1,min(u) and M (N)
3,min(u) may be com-

puted by the following generic Monte-Carlo algorithm:
1. Generate a list of n samples ŷ(1), ŷ(2), . . . , ŷ(n) from p(y;u).
2. For � = 1, 2, . . . , n, evaluate the expressions

EXN |YN;U

[
∇u�(X

N, ŷ(�);u)
]

(24)

and

∇u EXN |YN;U

[
∇u�(X

N, ŷ(�);u)
]
. (25)

y1 y2 y3

==
U

p0(x0) p(x3, y3|x2;u)

X0 X1 X2 X3 . . .

. . .

Fig. 1. Factor graph of the state space model (30).

3. Compute the estimate F̂ (N)(u) by averaging over the sam-
ples ŷ(1), ŷ(2), . . . , ŷ(n):

F̂ (N)(u)
�

=
1

n

n∑
j=1

[
EXN |YN;U

[
∇u�(X

N, ŷ(j);u)
]

· EXN |YN;U

[
∇u�(X

N, ŷ(j);u)
]T

]
. (26)

Similarly, compute estimates F̂ (N)
M (u), F̂ (N)

E (u), and Ĵ (N)
E (u)

of F (N)
M (u), F (N)

E (u) and J (N)
E (u) respectively.

4. Compute the estimate

[Ĥ
(N)
M (u)]acd

�

=
∑

b

[F̂
(N)
M (u)]cdb

[
F̂ (N)(u)−1

]
ba
. (27)

5. Conclude with the estimates

M̂
(N)
1,min(u)

�

=
[
F̂ (N)(u)

]−1

(28)

and

M̂
(N)
3,min(u)

�

=
1

2

(
Ĝ

(N)
M (u) + 2 Ĝ

(N)
E (u)

)
, (29)

where Ĝ(N)
M (u) and Ĝ(N)

E (u) are by obtained from (8) and
(14) respectively by replacing F , HM , FE , and JE with
F̂ (N), Ĥ(N)

M , F̂ (N)
E , and Ĵ (N)

E respectively.

4. STATE SPACE MODEL

As an illustration, we apply the above algorithm to the (generic)
parameterized state space model

p(xN , yN ;u)
�

= p0(x0)

N∏
k=1

p(xk, yk|xk−1;u), (30)

with parameter vector u ∈ R
M . In many important applications

(see, e.g., Section 5), the model (30) is a curved exponential fam-
ily. The marginal distribution p(yN ;u), however, is most often
neither an exponential family nor a curved exponential family.
Fig. 1 shows a factor graph of (30) (each node corresponds to fac-
tor, each edge to a variable; we refer to [10] for an introduction
to factor graphs). Plugging the model (30) into the conditional
expectation (24) amounts to:

EXN |YN;U

[
∇u�(X

N, yN ;u)
]

=
N∑

k=1

EXk−1Xk|YN;U [∇u�(Xk, yk|Xk−1;u)] , (31)

where the expectations in the RHS are with respect to the mar-
ginal distributions p(xk, xk−1|y;u). Those marginals may be ob-
tained as [10] (see Fig. 1):

p(xk, xk−1|y
N ;u) ∝

→
μ (xk−1)

←
μ (xk)p(xk, yk|xk−1;u), (32)
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a

σ2
U

σ2
W

b

cT

XkXk−1

Uk

Wk

yk

N

N

. . .. . . =+

+

A

Fig. 2. Factor graph of state space model (37) (38).

where the messages →μ (xk) (rightward arrows in Fig. 1) are com-
puted by the sum-product forward recursion

→
μ (xk) ∝

∫
xk−1

→
μ (xk−1)p(xk, yk|xk−1;u) dxk−1, (33)

with μ0(x0)
�

= p0(x0), and similarly, the messages
←
μ (xk) (left-

ward arrows in Fig. 1) are determined by the sum-product back-
ward recursion

←
μ (xk) ∝

∫
xk+1

←
μ (xk+1)p(xk+1, yk+1|xk;u) dxk+1, (34)

with ←μ (xN )
�

= 1 [10]. The gradient (25) of the conditional ex-
pectation (24) involves besides the messages →μ (xk) and ←μ (xk)

also the messages ∇u
→
μ (xk) and ∇u

←
μ (xk); the latter are com-

puted by recursions similar to (33) and (34) (see the longer re-
port [11] for more details).

5. NUMERICAL EXAMPLE

As in [5], we consider the auto-regressive (AR) process

Xk = a1Xk−1 + a2Xk−2 + · · ·+ aKXk−K + Uk, (35)

where a1, . . . , aK are unknown real parameters, and U1, U2, . . .

are i.i.d. real zero-mean Gaussian random variables with vari-
ance σ2

U . We observe the real random variable Yk given by

Yk = Xk +Wk, (36)

where Wk are i.i.d. real zero-mean Gaussian random variables
with variance σ2

W . From the observation y = (y1, . . . , yN ), one
wishes to jointly estimate the coef cients a and the variances σ2

U

and σ2
W . The expressions (35) and (36) can be rewritten as the

state space model:

Xk = AXk−1 + bNk (37)
Yk = cTXk +Wk, (38)

where

Xk
�

= [Zk, . . . , Zk−K+1]
T (39)

A
�

=

[
aT

IK−1 0K−1

]
(40)

b
�

= c
�

=
[
1 0T

K−1

]T (41)

a
�

= [a1, . . . , aK ]T , (42)

200 400 600 800 1000
10 3

10 2

10 1

N

M
SE
an
d
bo
un
ds

200 400 600 800 1000
10 3

10 2

10 1

N

M
SE
an
d
bo
un
ds

Fig. 3. MSE and bounds for coef cient estimation.

where In is the n × n identity matrix, and 0n is a zero (column)
vector of dimension n.
The factor graph of Fig. 2 represents the model (37) (38); it has
been used in [12] to derive various algorithms for estimating the
parameters u �

= (a1, . . . , aK , σ
2
N , σ

2
W ). The same graph can be

used to compute the conditional expectation (24) and its gradi-
ent (25): the recursions (33) and (34) (indicated by the arrows in
Fig. 2) are equivalent to Kalman recursions for mean vectors and
covariancematrices [10]; the messages∇u

→
μ (xk) and∇u

←
μ (xk)

are computed by similar Kalman recursions [11].
We have computed the CRBM (1,N)

min (u) and its higher-order cor-
rectionM (3,N)

min (u) (cf. (19)) for the estimation of a, σ2
U and σ2

W .
Fig. 3 summarizes the results for the coef cients a; it shows: (i)
the MSE of the linear predictive coding algorithm [13] (solid;
left and right) with known σ2

N = 0.1 and σ2
W = 0; (ii) MSE

of grid-based algorithm of [12] (dashed) with unknown σ2
N =

0.1 and unknown σ2
W = 0.001 (left) and σ2

W = 0.01 (right);
(iii) CRB M (1,N)

min (u) (circles) with unknown σ2
N = 0.1 and un-

known σ2
W = 0.001 (left) and σ2

W = 0.01 (right); (iv) third-order
bound (19) (crosses) with unknown σ2

N = 0.1 and σ2
W = 0.001

(left) and σ2
W = 0.01 (right). As can be seen from Fig. 3, the cor-

rection termM (3,N)
min is signi cantly smaller thanM (1,N)

min (at most
30% of M (1,N)

min ), and the third-order asymptotic expansion (19)
can therefore be considered valid. Moreover, since the fth- and
higher-order corrections are likely to be negligible, the expan-
sion (19) is expected to practically coincide with the minimum
achievable MSE.
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