BAYESIAN SENSOR ESTIMATION FOR MACHINE CONDITION MONITORING

Chao Yuan and Claus Neubauer

Siemens Corporate Research, 755 College Road East, Princeton, NJ, 08540

ABSTRACT

We present a Bayesian framework to tackle the problem of
sensor estimation, a critical step of fault diagnosis in
machine condition monitoring. A Gaussian mixture model is
employed to model the normal operating range of the

Most widely used machine condition monitoring
algorithms attempted to establish a deterministic mapping
network from y to x based on a set of historical operation
data. Among them, there is Auto-Associate Neural Networks
(AANN), which built a five-layer neural network to model
this mapping [1, 2]. The multivariate state estimation

machine. A Gaussian random vector is introduced to model
the possible deviations of the observed sensor values from
their corresponding normal values. Different levels of
deviations are elegantly handled by the covariance matrix of
this random vector, which is estimated adaptively for each

technique (MSET) [1] estimated x as a linear combination of
training data via a kernel-based least square method. Both
methods learned a d-input-d-output network.

Regression methods were also proposed for sensor
estimation; support vector regression (SVR) is one of the

input observation. Our algorithm doesn’t require faulty
operation training data, as desired by previous methods.
Significant improvements over the previous methods are
achieved in our tests.

Index Terms— Machine condition monitoring,
expectation-maximization, Gaussian mixture model.

1. INTRODUCTION

most notable [3]. Different from the AANN and the MSET,
the SVR estimated a sensor from the other sensors’ observed
values and this is done for each of the d sensors. Thus, the
mapping network consists of d small d-input-one-output
mapping network.

The challenge to the above methods is that the
deterministic network must be able to map every possible y
close to the corresponding x in the normal operating range.
To achieve this, an input-output pair set {y;, X;}i1n
representative of all possible deviations is needed for

The behavior of a machine is represented by the readings of
a set of sensors installed in different parts of the machine.
When the machine is working properly, the sensor data

training. Since there are plentiful normal operation data, it is
not difficult to obtain training pairs where y; is within the
normal operating range so that x; = y;, However, it is

should be distributed in a normal operating range as shown
in Figure 1. A fault is detected if future data deviate much
from this range. To diagnose the fault, we additionally need
to locate the sensors which cause this deviation. Therefore,
fault diagnosis typically consists of two steps: sensor

difficult to acquire training data where y; is outside the
normal operating range (see Figure 1) for two reasons. First,
most of the time, a machine is operating normally; second,
the corresponding x; is simply unknown. Certain artificial
deviations were added to x; to form y; in the hope of

estimation and rule-based decision [1]. In sensor estimation,
based on the observed values y of sensors, we estimate the
normal values x that sensors should have if the machine
operates normally. Both x and y are d-dimensional vectors,
where d is the number of sensors used. In rule-based
decision, fault types are determined based on the
observations, estimates and residues (the difference between
the observation and the estimate) of sensors.

Sensor estimation is our focus. Since a fault usually only
affects a small number of sensors, a natural way is to use the
observed values of normal sensors to infer the normal values

augmenting the ftraining data [2]. However, this is
insufficient considering the number of possible deviations
combined with the number of sensors.

We employ a Bayesian framework to establish a
probabilistic mapping from y to x, where both x and y are
random vectors. A Gaussian mixture model (GMM) is used
to model the normal operating range of the machine, namely,
the probability density function of x. A Gaussian random
vector € with zero mean and an unknown diagonal
covariance matrix @ is introduced to model the possible
deviation of y from x such that:

of faulty sensors. However, under many circumstances, we
don’t know which sensor is faulty. This is assumed

Y= X+E&. [€))
Our model is able to model different levels of deviations

throughout this paper, although we note that such through © which is adaptively estimated for each input y. If
information can be very helpful. the jth sensor value y; is normal, the corresponding variance

©; will be small such that ¢; is close to zero and x; = y;; if a
1-4244-0728-1/07/$20.00 ©2007 IEEE II-517 ICASSP 2007

Figure 1. Sensor estimation for machine condition
monitoring. The shaded region denotes the normal
operating range. Circles are the normal operation data.
The square y denotes a faulty observation. x is the
corresponding estimate in the normal operating range.

sensor value y; is faulty, ©; will be large to allow x; to be
different from y; The expectation-maximization algorithm
[4] offers us a way to estimate both x and @ from y.

The highlight of our algorithm is that the flexibility of @
eliminates the need for faulty operation training data, as
desired by previous methods, and our Bayesian model only
requires normal operation training data. Furthermore, there

components. The prior probability for a component P(s) is
denoted by p,. P(x) involves parameters: p,, myy, Cy, wWhich
are estimated by maximum likelihood estimation (MLE)
based on the normal operation training data.

Once P(x) is available, the joint distribution of x and y
given component s is readily computed from (1):

X mxls Cxls Cxls
s~N R
y | mxls Cxls Cxls + @

2.3. Estimating x and © simultaneously

. “

During monitoring, for an input observation y, the goal is to
compute (2). However, both x and @ are unknown and must
be estimated from y. We proceed by rewriting (2) as:

E(x1y,®)=> P(s1y,®)E(x1y,s50). (5)
s=I1

Every equation on the right side of (5) can be easily
computed based on (4) if ® is known.
We resort to the Expectation-Maximization (EM)

are no ad hoc parameters needed to be preset.

The remainder of this paper is organized as follows. In
Section 2, we describe our Bayesian model and how to
estimate x and ® simultaneously from y. We present
comparison test results in Section 3. A summary is provided
in Section 4.

2. DESCRIPTION OF THE ALGORITHM
2.1. Overview of the algorithm

During the training stage, P(x), the probability density
function of x is learned from normal operation data, which is
described in Section 2.2. During monitoring, in terms of
minimizing the mean square error (MSE), the optimal
estimate X is given by

x =E(xy, ©),)
the conditional expectation of x given y. Since x depends on
0, O is also viewed as one condition. The estimation of @ is
elaborated in Section 2.3. For real-time applications,
algorithm speedup procedures are provided in Section 2.4.

2.2. Modeling P(x)

We use the Gaussian mixture model (GMM) to model the
distribution of x, since the GMM is capable of modeling
complex distributions [5]:

P(x)= ZIiLP(xls)P(s), (3)

where s is the label for the sth mixture component. x given s
has a Gaussian distribution: x | s ~ N (my,, Cy;,), where my,
and C,, are the mean and covariance of the Gaussian
distribution for component s respectively. K is the number of

algorithm [4] for estimation of x* and ® simultaneously.
The EM is a powerful tool for maximum likelihood
estimation in the presence of hidden variables. In our case, x
is viewed as the hidden variable and @ is the parameter to be
estimated. The EM algorithm aims at solving the following
MLE problem:

MaxP(y}®). 6)

We alternate the estimation of x* in the E-step and the
estimation of @ in the M-step. Suppose that we are now in
the nth iteration and the current estimate of ® is denoted by
0",

In the E-step, the following function is computed:

0(6,6"")= Eliog(Ply,x10))y.0""| @)
In the M-step, we seek ®" which maximizes (7):
0" = arg ngQ(@,@("*"). ®)

Specifically, we first estimate ®£"), the @ estimated solely
using the sth Gaussian mixture component:

@ﬁ”) =diag (El(y - x)(y - X)T Y, s,®("71)D.)
Since we assume that ® is a diagonal matrix, we apply
diag() in (9) to keep the diagonal elements and set the off-
diagonal elements to 0. Then the results are combined:

0" =3 p(sly.0l ot (10)

s=1

X = E (x |y, ©") is just an intermediate result in the E-
step while ®” is updated in the M-step. The above E and M
steps are iterated repeatedly until the algorithm converges
(which was guaranteed [4]) and we output the final X .

The estimated ® favored by the maximum likelihood
estimation requirement in (6) has very nice properties. For y;
which deviates much from x;, the corresponding @; is large

IT- 518

so that the estimated x; is allowed to be far from y; and to be
located in the normal operating range. On the other hand, for
a normal y;, the corresponding @; is small and x; is forced to
be close to y;. In contrast to previous methods using the
deterministic networks, our algorithm doesn’t require any
training data containing deviations. The possible deviations
are elegantly handled by @, which is adaptive with respect to
each input y.

2.4. Algorithm speedup

We now analyze the computational complexity of the above
algorithm for each test input y. Assume that the number of
iterations of the EM algorithm is =~ M. In each iteration, the
EM algorithm involves the calculation of the inverse of the
covariance matrix Cy + OV for each Gaussian component.
Thus, the complexity of the above EM algorithm is
O(MKd®). Such complexity obstructs real time monitoring,
especially when d (the number of sensors) is large. We
propose two ways to speed up the algorithm.

2.4.1 Use of isotropic Gaussian model

We model each mixture component using an isotropic
Gaussian model such that x | s ~ N (my, Cy, = 0’1, where
the covariance matrix is the multiplication of a scalar ¢* and
a d x d identity matrix I. o” is the same for all mixture
components. Learning P(x) using a mixture of isotropic
Gaussian models is also referred to as kernel density
estimation [5], which is another popular but simple way to
model complex distributions. By doing this, inverse of Cy +
@Y only needs O(d) computational time. This reduces the
complexity of the algorithm to O(MKd).

2.4.2 Component selection

During the EM iterations, we often observe that for many
mixture components, P(s | y, @) = 0 and one can remove the
corresponding terms from (5) and (10) without much loss of
precision. This motivates us to propose the following
component selection algorithm.

During the first iteration of the EM algorithm, we rank
the P(s ly, 09) for all components in descending order. We
select components, starting with the one with the highest P(s
Iy, 9(0)) until the sum of P(s |y, (')(0)) of the selected
components > 95%. Only the selected components are used
in the afterwards EM iterations. In our experience, for K =
60, the number of selected components L ranges from 1 to 6.
This further reduces the complexity to =~ O(MLd) where
L<<K.

Throuch the
1T gh the

above two

aneedun
speciup pPi uics, Ui

proposed method is capable of monitoring real time data
with second time resolution.

nrgcgdnr@c the

3. TEST RESULTS

We applied the proposed algorithm to monitor gas turbines.
Note that the same methodology is applicable to other
devices. The performance of the proposed method
abbreviated as GMM (using isotropic Gaussian models) was
compared with that of the SVR and the MSET methods. K
(the number of Gaussian components) was empirically set to
60 in our tests. There are about 400 sensors installed in each
gas turbine under our investigation. 35 sensors which are
frequently used in a rule decision system were selected to
build our models. They are: power, IGV actuator position,
inlet temperature, and 32 blade path temperature (BPTC)
Sensors.

Real fault cases could be used to test algorithms.
However, the normal value of a sensor is unknown and thus
it is difficult to evaluate the accuracy of sensor estimation.
Thus we consider artificial faults which are simulated by
adding deviations to some selected sensors in some time
range. By checking the difference (error) between the
estimate and the ground truth (original) value of each sensor,
we are able to evaluate sensor estimation accuracy
quantitatively.

The error measures we use are now introduced.
Estimation error of a sensor is the absolute difference
between the estimate and the ground truth value. We
distinguish three types of estimation errors. E, is the average
estimation error of all sensors in the normal time range
(without any fault). E,, is the average estimation error of all
normal sensors in the faulty time range. Ej is the average
estimation error of all faulty sensors in the faulty time range.
E, and E, indicate the false alarm level while Ej indicates
the fault detection sensitivity. Small values are preferred for
all these errors. Another way to represent results is to use
ROC curves which are mainly used for a detection problem
(vs. our estimation problem).

The tests are now detailed. We selected a gas turbine data
set, which covers 20 days’ normal operation and has a time
resolution of 15 minutes. The first 20% (400 data points) of
the data set was used for training and the rest for monitoring.
Only the original normal training data were used for training
the SVR and the MSET. A step fault with a magnitude of 40
was added to two blade path temperature sensors: BPTC6A
and BPTC6B between the 500™ and the 600" data point.
Figure 2a shows one faulty sensor BPTCO6A in part of the
monitoring time. The mean and standard deviation were
calculated for each of the 35 sensors using the training data
and were applied to normalize both training and test data.

Figure 2b shows the residue (the deviation between the
observed value and the estimate, i.e. y — Xx) results of a
normal sensor BPTCIB for all three algorithms. For a
normal sensor, its residue must be small to avoid false
alarms in the rule-based decision step. It is clear that the
residues from the SVR and the MSET are much larger than
those from our GMM algorithm. It is worth noting that
during the faulty time range (between the 500™ and 600™
data point), the SVR and MSET produced even higher

IT-519

——GmMm
SVR
5 ——— MSET

®

““4o0 a50 500 550 600 650 700 750 81

Data point

Figure 2. An example of sensor estimation. (a) A faulty sensor BPTC6A, where a step fault with a
magnitude of 40 occurred between the 500" and 600" data point. (b) The residues of a normal
sensor BPTC1B produced by different algorithms. The residues from our GMM algorithm are the
smallest (and the best), which are not affected by the deviation of the faulty sensors .

61
L 600 s
=
< 590
> 580
el
O s70
a 660
2
o 650
o 540
530 (a)
522 0 450 500 EED 600 650 700 750 800
Data point
12
BRI > J @9
E, e o .
—e—GMM
8 @ SVR
= ©-- MSET
6
E T —— 23
Y S—— R — @ < |
(a)
20 30 40 50 60 70 80 20 100

Fault magnitude

12

Eff 10 e e

70 80 20 100

Fault magnitude

Figure 3. Estimation errors for different algorithms. (a) E,, vs. the step fault magnitude (b) Ej vs.
the step fault magnitude. Step fault magnitude was varied from 20 to 100 in increments of 20. Our
proposed method GMM produced the lowest estimation errors in both measures.

residues. This is attributed to the fact that such a faulty input
y cannot be mapped accurately via a deterministic network
trained only on a normal training set (as we noted in Section
1).

To test how different algorithms respond to different
levels of deviations, we varied the magnitude of the step
fault from 20 to 100 in increments of 20 and repeated the
above test. Our GMM algorithm produced the smallest
estimation error E, = 0.60, followed by 1.24 (MSET) and
1.70 (SVR). Note that E, doesn’t change with fault
magnitude. Figure 3 shows the estimation error E,; and Ej
for different algorithms vs. the fault magnitude. Our GMM
algorithm produced the smallest errors which are relatively
constant regardless of the fault magnitude. This confirms
that the estimated covariance matrix @ correctly handled
different levels of deviations. However, with the increase of
fault magnitude, the SVR and MSET produced larger errors
since the faulty test input becomes even less represented by
the normal training set.

4. SUMMARY

A Bayesian sensor estimation algorithm is presented. A
Gaussian random vector € is introduced to model the
deviation of the observation y from the corresponding
normal values x. The covariance matrix @ of € is adaptively
estimated together with x via the EM algorithm. Test results

show the advantage of the new algorithm over previous
methods.

The proposed algorithm has its applications to general
multivariate signal (e.g. 1images) reconstruction and
denoising. Our work can be extended by using temporal

JE DR PR PSR IPY
UCpenUcliCy dainoiig ddid pUl 1L

v

REFERENCES

[1] J. W. Hines, A. Gribok and B. Rasmussen (2001), “On-Line
Sensor Calibration Verification: A Survey”, International Congress
and Exhibition on Condition Monitoring and Diagnostic
Engineering Management.

[2] D. Wrest, J. W. Hines, and R. E. Uhrig (1996), “Instrument
Surveillance and Calibration Verification Through Plant Wide
Monitoring Using Autoassociative Neural Networks”, the 1996
American Nuclear Society International Topical Meeting on
Nuclear Plant Instrumentation, Control and Human Machine
Interface Technologies, May 6-9.

[3] A. V. Gribok, J. W. Hines and R. E. Uhrig (2000), “Use of
Kernel Based Techniques for Sensor Validation in Nuclear Power
Plants”, International Topical Meeting on Nuclear Plant
Instrumentation, Controls and Human-Machine Interface
Technologies.

[4] A. P. Dempster, N. M. Laird and D. B. Rubin (1977),
“Maximum-likelihood from Incomplete Data via the EM
Algorithm”, Journal of the Royal Statistical Society, Series B, 39,
pp-1-38.

[5] R. O. Duda, P. E. Hart and D. G. Stork, “Pattern
Classification”, 2" Eq, Wiley Interscience, 2001.

IT - 520

