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ABSTRACT
Factorial switching state space models are large hybrid time series
models in which inference is intractable even in a single time slice.
For the conditional Gaussian case, we derive a message propagation
algorithm (upward-downward) that exploits the factorial structure of
the model and facilitates computing messages without the need for
inverting large matrices. Using the propagation algorithm as a sub-
routine, we develop a Rao-Blackwellized Gibbs sampler and a vari-
ational approximation of structured mean eld type to compute an
approximate proposal density. These proposal are useful for both l-
tering or for marginal maximum a-posteriori estimates. We illustrate
the utility of our approach on a large factorial state space model for
polyphonic music transcription.

Index Terms— Time series, Variational Bayes, Monte Carlo,
Multi Hypothesis Tracker

1. INTRODUCTION

Time series models with switching regimes are useful in various ar-
eas of applied sciences, such as control, econometrics, signal process-
ing and machine learning, see, e.g, [1]. In these disciplines, many
phenomena of interest can be naturally described as a sequence of
regimes, where, conditioned on the latent regime label, observed
data is thought of as a realization from a (simple) model.

One simple switching state space model can be de ned by the
following hierarchical probabilistic model

r0 ∼ p(r0) θ0 ∼ N (m,V )

rk ∼ p(rk|rk−1)

θk ∼ p(θk|θk−1, rk) = N (Akθk−1, Qk)

yk ∼ p(yk|rk, θk) = N (yk; Ckθk, Rk)

where the index k = 0, 1, . . . denotes the time, θk is a hidden state
vector and yk is the observation. The discrete switch variable rk

is a regime indicator with |r| states. It selects the state transition
model the latent process {θk} will take and the observation model
active at time k. If transition and observation models are condi-
tionally Gaussian, we have the switching Kalman lter model [2]
where where Ak, Qk denote the transition matrix and noise covari-
ance, Ck, Rk denote observation matrix and noise covariance and
m,V are initialisation mean and noise covariance. We assume these
are known given rk, i.e. we have Ak = A(rk), e.t.c.

1.1. Inference

Often, given observations y1:K ≡ y1 . . . yK , we are interested into
various marginals of the posterior, such as p(rk, θk|y1:k) (known as
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the ltering density) or p(r1:K |y1:K). In the latter case, each hidden
con guration r1:K ≡ {r1, . . . , rK} speci es a possible segmenta-
tion to explain the data up to time K. We are naturally interested
into the most likely segmentation

r∗1:K = argmax
r1:K

p(r1:K|y1:K)

where the posterior marginal is given as

p(r1:K|y1:K) ∝ p(r1:K)

�
dθ1:Kp(y1:K |θ1:K , r1:K)p(θ1:K |r1:K)

The dif culty of this optimisation problem stems from the fact that
integrand needs to be evaluated for each of the exponentially many
con gurations r1:K . Such “hybrid” inference problems, also known
as MMAP (Marginal Maximum a-posteriori [3]) are signi cantly
harder than computing expectations and marginals (which only in-
volves integration) or optimisation (which only involves maximisa-
tion) [4]. This is due to the fact that the “inner” integration over a
subset of the variables renders the remaining variables fully coupled
destroying the Markovian structure which in turn renders the “outer”
optimisation problem a hard joint combinatorial optimisation prob-
lem. Apart from a few special cases, where an exact polynomial time
algorithm is known [5, 6, 7], in general the only known exact solu-
tion is exhaustive search: which is in a sequential setting equivalent
to carrying forward a conditional ltering potential φ(θk|r1:k) for
each of the exponentially many con gurations of r1:k.

1.2. Factorial switching state space model

In many applications such as vision, audio signal processing (source
separation, spectral analysis and polyphonic transcription [6]) and
monitoring [8] one often faces with simultaneously unfolding processes
which collectively describe the observed phenomena. In such sce-
narios, a factorial model, where individual processes are modelled
by a switching state space model is useful.

The factorial switching state space model consists of ν = 1 . . . W
models with a shared observation. More precisely,

rk,ν ∼ p(rk,ν|rk−1,ν)

θk,ν ∼ p(θk,ν|θk−1,ν , rk,ν)

and the observation is given (in the conditionally Gaussian case)

yk ∼ p(yk|θθθk) = N (yk;
W�

i=ν

Cνθk,ν , R)

where θθθk ≡ θk,1:W . Here, to simplify notation, we have assumed
p(yk|rk, θθθk) = p(yk|θθθk)where rk ≡ rk,1:W ; the algorithms can be
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easily modi ed when this is not the case. Unfortunately, the factor-
ial structure of the model prohibits the computation of the posterior
ltering density, even when conditioned on all random variables in
the previous time slice.

2. INFERENCE

In the batch case, when all observations are available, we can com-
pute marginals of the posterior (e.g., smoothed estimates) by ef-
cient Rao- Blackwellized [9] Gibbs sampling methods, that only
sample from switches r and integrate out the latent continuous state
variables [10]. Similarly, the MMAP problem can be attacked by
simulated annealing (SA) using a logarithmic cooling schedule [11].

If sequential inference is desirable due to real-time requirements,
a Rao- Blackwellized particle lter (RBPF) [12] can be used, that for
the conditional Gaussian case is known as the mixture Kalman lter
(MKF) [13]. Similarly, a suboptimal breadth rst search algorithm
can be used for computing MMAP, that is similar to the well known
multi hypothesis tracker (MHT).

MKF approximates the conditional ltering density by a collec-
tion of Gaussian kernels p(θθθk, r1:k) ≈

�N

i=1 φ(i)(θθθk; r
(i)
1:k) where

each kernel is of form Z
(i)
k N (θθθk; μ

(i)
k , Σ

(i)
k ) with mean μ

(i)
k , covari-

ance Σ
(i)
k and Z

(i)
k =

�
dθθθkφ(i). An alternative representation is

the canonical form φ(i)(θθθ) ≡ exp
�
− 1

2
θθθ�K(i)θθθ + θθθ�h(i) + g(i)

�
where K is the precision matrix, h is a vector and g is a scalar.
Similarly, a MHT keeps track of a set of trajectories r(i)

1:k (hypothe-
ses) that correspond to likely switch con gurations. Omitting techni-
cal details, starting with a set of particles/hypotheses {φ(i)

k−1}i=1...N

where φ
(i)
k−1 ≡ φ(i)(θθθk−1; r

(i)
1:k−1), the following steps are iterated:

Propose: Generate j = 1 . . . J new particles from each particle

r
(j|i)
k ∼ q(rk|yk, r

(i)
k−1)

Extend: Conditioned on rk = r
(j|i)
k , compute new particles and

their weights

φ
(j|i)
k = p(rk|r

(i)
k−1)

�
dθθθk−1p(yk|θθθk)p(θθθk|θθθk−1, rk)φ

(i)
k−1

w
(j|i)
k =

�
dθθθkφ

(j|i)
k

Prune/Resample: (Optional) Select {φ(i)
k }i=1...N from {φ(j|i)

k }j=1...J
i=1...N

according to the weights w
(j|i)
k

Typically, for MKF, the selection schema is by sampling from a cat-
egorical distribution proportional to the weights, but other asymptot-
ically consistent schemata are possible. In MHT, we typically retain
N particles with the highest weights, but other heuristics, which try
to introduce diversity may be used.

In both algorithms, the success of the sequential schema hinges
on the quality of the proposal. Intuitively, we would like to make
use of the recent observation yk hence for each particle, we wish
to propose from q = p(rk|y1:k, r

(i)
k−1). It turns out for MKF, this

choice is indeed optimal in terms of reducing variance of importance
weights [12] which is equivalent to choosing the nearest distribution
to the exact posterior in the sense of a certain divergence measure.
Similarly, forMHT wewish to apply a greedy search mechanism and
for each particle select the most likely switch con guration r

(i)∗
k ≡

arg maxrk
p(rk| y1:k, r

(i)
k−1). However, the factorial structure of the

model prohibits sampling from this optimal proposal distribution or
computing its mode for even a single time slice since the joint state
space of the indicators rk,1:W scales exponentially withW .

2.1. Approximating the proposal distribution

The optimal proposal p(rk|y1:k, ·) is proportional to

�
dθ1:W dθ̄1:W φ(i)(θ̄1:W )

��
ν

p(i)(rν)p(θν|θ̄ν , rν)

�
p(yk|θ1:W )

where we drop the time index k when referring to rk and use the
notation p(i)(rν) = p(rk,ν|r

(i)
k−1,ν). Moreover we de ne θ ≡ θk

and θ̄ ≡ θk−1. Conditioned on a particular con guration r1:W , this
integral can be computed in various orders, analogous to forward-
backward message passing in HMM’s or two lter smoother for-
mulation of Kalman Filter Models. Note that, the propagation is
across factors ν rather than time index k. To highlight this distinc-
tion, we de ne upward order when we integrate out variables θk−1,ν

in the order ν = 1, 2, . . . , W and downward ν = W,W − 1, . . . , 1.
The idea is to exploit the factorial structure of the transition model;
our derivation is exactly analogous to the junction-tree algorithm
specialised to the factorial hidden Markov model (FHMM) of [14].
However, unlike the FHMM, the messages are tractable because
space requirements scale quadratically in contrast to exponentially.
We de ne the following messages:

• upward: αν ≡ p(ŷ1:k−1, θk−1,ν+1:W , θk,1:ν , r̂1:ν)

α0 ≡ φ(i)(θ̄1:W )

αν =

�
dθ̄νp(i)(rν)p(θν |θ̄ν , rν)αν−1

• downward: βν ≡ p(ŷk|θk−1,ν+1:W , θk,1:ν , r̂ν+1:W )

βW ≡ p(yk|θ1:W )

βν−1 =

�
dθνp(i)(rν)p(θν |θ̄ν , rν)βν

Hence, the conditional distribution is given by

p(rν|r¬ν , y1:k) ∝

�
dθ̄ν:W , dθ1:νp(i)(rν)p(θν |θ̄ν , rν)αν−1βν (1)

where ¬ν ≡ {1, . . . , W } − {ν}.

2.2. Approximate Inference

In this paper, we investigate two approximate inference methods to
approximate the optimal proposal

• A Rao Blackwellized Gibbs sampler [9] (remisicent to [10])
• A Variational approximation of Structured Mean Field type
([15, 16])

The Gibbs sampler relies on constructing a Markov chain where we
sample iteratively from full conditional densities

rν ∼ p(rν|r
(t+1)
1 , r

(t+1)
2 , . . . , r

(t+1)
ν−1 , r

(t)
ν+1, . . . , r

(t)
W , y1:k)

where t is the iteration index. It is easy to see that this density can
be calculated using 1.

Variational Bayes is an alternative approximation method based
on deterministic xed point iterations [17, 16] and have direct links
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Algorithm 1 Rao Blackwellized Gibbs sampler/Variational Bayes
for ν = 1 . . . W do
if Method = Gibbs then
Sample from transition prior of indicators
r̂
(i,0)
ν ∼ p(i)(rν)
else
Set the variational approximation on switches
q
(i,0)
ν ← p(i)(rν)
end if
end for
for τ = 1 to MAXEPOCH do
Downward Pass: compute and store β messages
β

(τ)
W ← p(yk|θθθ)
for ν = W . . . 1 do
if Method = Gibbs then
β

(τ)
ν−1 ←

�
dθνp(i)(rν = r̂(i,τ−1))p(θν |θ̄ν , rν = r̂(i,τ−1))β

(τ)
ν

else
β

(τ)
ν−1 ←

�
dθν exp

��
log p(i)(rν)p(θν |θ̄ν , rν)

�
q
(i,τ−1)
ν

�
β

(τ)
ν

end if
end for
Upward Pass
α

(τ)
0 ← φ(i)(θ̄)
for ν = 1 . . . W do
Evaluate the full conditional of the marginal ltering density
p(rν |r̂

(i,τ)
¬ν , y1:t)

for c = 1 . . . |rν | do
π

(τ)
ν (c) ←

�
dθ̄ν:W , dθ1:νp(i)(rν = c)p(θν |θ̄ν , rν =

c)αν−1βν

end for
if Method = Gibbs then
Sample the indicator from proposal computed with annealing pa-
rameter ρτ

q(τ)
ν ← (π(τ)

ν )ρτ /
�

c

(π(τ)
ν (c))ρτ r̂(i,τ)

ν ∼ q(τ)
ν

else
Rescale variational approximation with annealing parameter ρτ

q(i,τ)
ν ← (π(τ)

ν )ρτ /
�

c

(π(τ)
ν (c))ρτ

end if
if Method = Gibbs then
Compute the upward message

α(i,τ)
ν =

�
dθ̄νp(i)(rν = r̂(i,τ)

ν )p(θν |θ̄ν , rν = r̂(i,τ)
ν )α

(i,τ)
ν−1

else
Compute the upward message using average canonical parame-
ters

α(i,τ)
ν =

�
dθ̄ν exp

��
log p(i)(rν)p(θν |θ̄ν , rν)

�
q
(i,τ)
ν

�
α

(i,τ)
ν−1

end if
end for
end for

with the well-known expectation-maximisation (EM) type of algo-
rithms. In our case, mean eld boils down to approximating a target
posterior with a simple distribution Q in such a way that the in-
tegral becomes tractable. An intuitive interpretation of mean eld
method is minimising the KL divergence with respect to (the para-
meters of)Q whereKL(Q||P) = 〈logQ〉Q−

�
log 1

Zy
φy

�
Q
Here,

P = φy/Zy where the φy is the integrand in the integral that de nes
the optimal proposal and Zy is the unknown normalisation constant.
Here, the notation 〈f(x)〉

p(x) denote the expectation of the function
f(x) under the distribution p(x).

In our case, we choose Q ≡ qθ

�W

ν=1 qν ≡ qθq1:W where qν

are discrete distributions and qθ = qθ(θθθ, θ̄). The VB approach leads
to the following xed point equations that need to be iterated until
convergence:

qν ∝ exp
	
〈log φy〉q

¬ν qθ



qθ ∝ exp

	
〈log φy〉q1:W



(2)

where q¬ν ≡
�

v qv/qν , that is the joint distribution of all factors
excluding qν . It turns out that (2) can be computed using the same
message passing schema, but using expected canonical parameters
where expectations are taken w.r.t. q1:W . While the starting princi-
ples differ, both methods are algorithmically very similar, as detailed
in panel 1.

2.3. Example

To motivate our approach, we illustrate the algorithm on a model
for polyphonic music. This model is a slightly different version of a
model described in [6]. In this model, each factor process models the
sound generation mechanism of a pitch with fundamental (angular)
frequency ων . The discrete indicators denote onset events where
rk,ν ∈ {“new”, “reg”} . The state vector θ represents the state of an
harmonic oscillator. The fundamental frequency of the oscillation
is determined by the transition matrix (for the regular regime rν =
“reg”) has a block diagonal structure as

Aν ≡ blkdiag{ρ1B(ων)�, . . . , ρHB(Hων)�}N

B(ω) ≡
�

cos(ω) − sin(ω)
sin(ω) cos(ω)

�

where B is a rotation matrix and ρh are damping factors such that
0 < ρh < 1 for h = 1 . . . H . The observation matrix has a block
structure with C = [C1 . . . Cν . . . CW ] where each block Cν is
N × 2H . In turn, each of the blocks Cν consist of smaller blocks
of size 1 × 2 where the block at t + 1’th row and h’th double col-
umn is given by ρt

h[cos(hωνt) sin(hωνt)]. The observation noise is
isotropic with diagonal covariance R.

The switches control the transition noise variance Qk. In regu-
lar mode, Qk = Q(rk,ν = “reg”) is small, meaning that the model
undergoes its regular damped periodic dynamics. When an onset
occurs, the transition noise is has large variance, Qk = Q(rk,ν =
“new”), and the transition matrix is set to Ak = 0. This has the
effect of forgetting the past and reinitialising the state vector θk,ν .
Intuitively, this is a simpli cation of a physical model where a vi-
brating string (as represented by θθθ in state space form) is plucked by
injecting some unknown amount of energy.

In the rst illustration, we have sampled from the model a sin-
gle frame of length N = 640 samples that corresponds to 29 msec
with sampling frequency Fs = 22050 Hz. Each factor is assumed
to be a single frequency H = 1 distributed geometrically between
roughly 100 and 300 Hz (corresponding to Midinotes 30 . . . 50). In
this case, the task is to nd the number of frequency components.
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Fig. 1. A typical run of variational approximation. (Top) Variational
approximation during iterations; the higher qν(r = “new′′), the
darker the corresponding cell (Middle) Time Domain signal, (Bot-
tom) FFT modulus and true (dashed) and estimated (stem) frequency
components.

As can be seen in g. 1, bottom panel, the frequencies are to close to
be resolved by FFT. The top panel shows the variational approxima-
tion qν , roughly shows the con gurations that are visited by the VB
method during iterations. Abrupt changes correspond to reinitialisa-
tions. In the second experiment, we have generated 100 independent
cases from the model. In gure 2.a, we show the distribution of edit
distance errors, where we count the number of mismatches between
the true and estimated switch con guration and illustrate in 2.b a
MHT algorithm that uses VB as a proposal.

3. DISCUSSION

In this paper, we have described an approximate inference method
to evaluate the ltering density for a factorial switching state space
model and described a stochastic (Gibbs sampling) and a determin-
istic (Mean eld - VB) method. Both methods make use of a mes-
sage passing schema, where only matrices of size equal to the band-
width of the transition matrix need to be inverted. The disadvantage
in contrast to the direct approach is increased storage requirement:
the downward (or upward) messages need to be stored. Our sim-
ulations suggest that both methods are comparable, with MCMC
slightly superior to VB in terms of quality. However, VB tends to
converge in less iteration and with annealing it seems to be a vi-
able and fast candidate. Due to space limitations, further simulation
results for this model along with a longer technical note about the de-
tails of the algorithm will be made available on our web-site http:
//www-sigproc.eng.cam.ac.uk/˜atc27/icassp07.
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