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ABSTRACT

Iterative denoising trees were used by Karakos et al. [1] for unsuper-
vised hierarchical clustering. The tree construction involves project-
ing the data onto low-dimensional spaces, as a means of smoothing
their empirical distributions, as well as splitting each node based on
an information-theoretic maximization objective. In this paper, we
improve upon the work of [1] in two ways: (i) the amount of compu-
tation spent searching for a good projection at each node now adapts
to the intrinsic dimensionality of the data observed at that node; (ii)
the objective at each node is to nd a split which maximizes a gen-
eralized form of mutual information, the Jensen-Rényi divergence;
this is followed by an iterative Na¨ve Bayes classi cation. The sin-
gle parameter α of the Jensen-Rényi divergence is chosen based
on the “strapping” methodology [2], which learns a meta-classifer
on a related task. Compared with the sequential Information Bot-
tleneck method [3], our procedure produces state-of-the-art results
on an unsupervised categorization task of documents from the “20
Newsgroups” dataset.

Index Terms— Unsupervised learning, clustering methods, in-
formation theory, text processing

1. INTRODUCTION

Decision trees are best known as tools for performing supervised
classi cation. The strategy, roughly speaking, is to recursively di-
vide the space of observations to obtain regions, each with a prepon-
derance of a single label. During training, this procedure amounts to
splitting the set of observations into subsets, each corresponding to
a node in the tree. The splitting of each node is guided by an opti-
mization objective that depends on knowing the labels of the training
observations.

In [1], the authors considered the problem of unsupervised clas-
si cation (clustering) using integrated sensing and processing de-
cision trees (ISPDTs). More precisely, ISPDTs were used in [1]
to cluster distributions1 —for example, in document clustering, one
can regard each document as an empirical distribution over words.2
Since in unsupervised classi cation there are no training labels, the

1Clustering of distributions is useful when building statistical models
from sparse data. Combining (clustering) models which are built from seem-
ingly different data fragments (but which are realizations of a common un-
derlying phenomenon) can signi cantly improve inference. This has been
demonstrated in a variety of elds, such as speech recognition, machine trans-
lation, computer vision, etc.

2Formally, each data point in [1] corresponded to the empirical distribu-
tion of a nite sample of a random process.

optimization objective that guides the growing of an ISPDT has to
depend only on the statistics computed from the data points. IS-
PDTs, also known as iterative denoising trees, differ from regular
regression trees in that some form of dimensionality reduction (or
projection) takes place at each internal node, before splitting [4].
This per-node projection allows feature extraction and smoothing of
the empirical distributions of the data that end up in each node, in-
dependently of other nodes. The smoothed distributions are subse-
quently used in the computation of the objective functions.

The optimization objectives that were evaluated in [1] for guid-
ing the split of each node were maximization of
• Mutual information: This was computed using the overall statis-
tics of the data points in the node, as well as the statistics of the
data points of the two clusters, in the form of a weighted sum
of Kullback-Leibler (KL) divergences (see expression (1) in [1]).
Chou’s algorithm [5], which is a version ofK-means that has the
KL divergence in the role of the “distance” between data points,
was used to nd a locally optimum split.

• Log-probability of error: This was approximated by the Cher-
noff information [6], which gives an upper bound to the exponent
of the probability of error in a binary hypothesis testing problem.
It is computed using Rényi’s divergence [7] (see expression (2) in
[1]), and its maximization results in clusters whose centroids are
as far as possible (under this divergence “distance”).
Under a fairly weak assumption that the data points are realiza-

tions of stationary, ergodic, and nite-memory Markov chains, the
above information-theoretic objectives correspond to optimal deci-
sion rules, as the lengths of the realizations go to in nity.

In this paper, we extend the ISPDT work of [1] in a number of
ways:
• When searching for a good low-dimensional projection at each
node, we adaptively decide how many projections to try, in con-
trast to the xed-size search space of [1]. Nodes that contain data
with high variability (e.g., at the root of the ISPDT) tend to result
in larger search spaces than nodes that contain, say, 1-2 tight clus-
ters (typically nodes close to the leaves). This approach reduces
the computational complexity of the procedure without adversely
affecting the clustering performance.

• We replace mutual information with a more exible objective
function, namely, the Jensen-Rényi divergence [8] (also called
α-Jensen difference [9]), which is parameterized by a positive
quantity, α. Jensen-Rényi divergences have many desirable prop-
erties (continuity, non-negativity, convexity, etc.) and have been
applied successfully to image registration problems [8]. The pa-
rameter α is tuned in an unsupervised manner, through “strap-
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ping” [2]. Speci cally, using a randomly-generated training data
set, whose labels do not overlap with the labels of the test set,
we build a meta-classi er which learns how to distinguish good
from bad clusterings. This meta-classifer is then applied to the
collection of classi cations that result from various values of α.

Experimental results from a benchmark task of document categoriza-
tion from the “20 Newsgroups” corpus [10] show that ISPDTs, com-
bined with Jensen-Rényi divergences and “strapping”, are competi-
tive with, and in most cases outperform, the sequential information
bottleneck procedure [3], which is considered the state-of-the-art in
unsupervised document categorization.

The paper is organized as follows. Section 2 contains mathe-
matical preliminaries, as well as a formal de nition of the clustering
problem. The methodology for growing ISPDTs, using the Jensen-
Rényi divergence as the optimization objective, is outlined in Section
3. Finally, the experimental procedure, and results from document
categorization, are described in Section 4.

2. PRELIMINARIES AND PROBLEM FORMULATION

For the rest of the paper, we assume that we are given a set of data se-
quences,A = {Xn(1), . . . , Xn(N)}, where n is the length of each
sequence. (The assumption of equal length n is not crucial, since
all sequences can be “padded” appropriately). The “hidden” labels
associated with these sequences are Y (1), . . . , Y (N), belonging to
some set Y of known cardinality. Each sequence Xn is generated
by some unknown random process PX|Y , uniquely determined by
its label Y . Assuming that each element ofXn lies in a discrete and
nite set X , its empirical distribution (or type [11]) is de ned as the
pmf P̂Xn(x) = n−1Pn

i=1 1(Xi = x), i.e., it results from counting
the number of occurences of each symbol3 x of X in Xn, and is an
approximation of the true process 4. We now have the following
Problem Formulation: Given L = |Y|, we want to nd a partition
A1, . . . , AL of the data set A, such that, with as high probability as
possible, if Xn(i), Xn(j) are in the same Ak, then Y (i) = Y (j).
This is equivalent to nding a function g : Xn → Y such that, with
high probability, g(Xn) = Y . We avoid the model selection prob-
lem by assuming that L is given, and we construct an ISPDT with
L leaves. The classi cation error is computed as in the supervised
case, after we perform a post-hoc assignment of labels to the leaves
of the ISPDT such that the error is as small as possible.

As mentioned in the introduction and in [1], the greedy con-
struction of ISPDTs requires an optimization objective at each node.
In this paper, the objective function which guides the splitting of
each ISPDT node is a generalized form of mutual information, the

3We use the term “symbol” loosely; in general, it could be a pair, triple,
etc. of symbols from X , or some nite-length sequence from X ∗; such ap-
proximations are needed in order to capture higher-order effects of the under-
lying process. In the document categorization application that we consider in
this paper, it suf ces to deal with the simplest case where the P̂ is a pmf over
words.

4For stationary processes, each P̂Xn converges almost surely to the data-
generating distribution PX|Y as n → ∞. Since P̂Xn is a suf cient statistic
for estimating the true distribution (and, hence, the hidden label Y ), each
data point Xn is represented in the ISPDT by (a projected version of) the
vector P̂Xn . The projection, among other things, plays the role of smoothing
P̂Xn , i.e., of assigning non-zero probabilities to all of its elements. This is
crucial when P̂Xn is a very sparse vector, as is the case of text documents,
where |X | is typically of the order of a few thousands; the projection reduces
dramatically the vocabulary size.

Jensen-Rényi divergence:

Iα(X; Y ) = Hα(PX)−
X

y

PY (y)Hα(PX|Y (·|y)), (1)

whereHα(P ) is the Rényi entropy of order α of pmf P , de ned as

Hα(P ) =
1

1− α
log

 X
x∈X

P (x)α

!
, α ≥ 0, α �= 1. (2)

As α → 1, Hα(P ) converges (non-obviously) to the usual Shan-
non entropy H(P ) = −Px P (x) log P (x), and it follows that
Iα(X; Y ) converges to the usual mutual information I(X; Y ). We
assume that α ∈ (0, 1] in this paper, in order to guarantee that
Hα(P ) is a concave function of P (as mentioned in [7], Hα is nei-
ther convex nor concave whenα > 1). This implies that Iα(X; Y ) is
non-negative (and it is equal to zero if and only ifX and Y are inde-
pendent). The conditional case can be treated similarly to the regular
mutual information [6]: Iα(X; Y |Z) =

P
z PZ(z)Iα(X; Y |Z =

z), where Iα(X; Y |Z = z) is the conditional analogue of (1).

2.1. Motivation for using Jensen-Rényi Divergences

We brie y present our motivation behind using these generalized
forms of mutual information in the optimization objective.

• Rényi entropy is less sensitive to sparseness
As can be seen from Figure 4 of [8], Rényi entropy remains
strictly larger than Shannon’s entropy when its argument appro-
aches the edges of the probability simplex. This means that the
effects of extreme sparsity in the data (resulting, for instance, in
underestimation of Shannon’s entropy, or, in overestimation of
regular mutual information) can be dampened, if Shannon’s en-
tropy is replaced with Rényi entropy and, consequently, the reg-
ular mutual information is replaced with the Jensen-Rényi diver-
gence.

• Jensen-Rényi divergence introduces a degree of freedom
A degree of freedom is added through α of the Jensen-Rényi di-
vergence. Learning to distinguish good classi cations from bad
ones (which arise when α ranges over the interval (0, 1]) can be
done using an unsupervised procedure, such as “strapping” [2].
Note that there are multiple de nitions of mutual information of
order α in the literature (see, for example, [7, 9, 12, 13, 8]); we
plan to empirically compare them as objective functions for un-
supervised classi cation in future work.

3. GREEDY CONSTRUCTION OF ISPDTS

The main steps for growing ISPDTs are described in [1]. We sum-
marize the algorithm here, including important differences in our
current implementation.

Beginning with a trivial 1-node ISPDT (i.e., the root of the tree,
which contains all the data points) we repeatedly choose a single leaf
node to split, until we have the desiredL leaves. In the present paper,
we always split whichever leaf yields the maximum increase in the
average (per node) Jensen-Rényi divergence (1) between data and
children identities (in the case α = 1, this average mutual informa-
tion is equal to equation (1) of [1]). If we were to split a leaf t into
children t0, t1, the resulting increase would be given by N(t)/N
times

S(t, t0, t1) � Hα(P̂ (t))− N(t0)

N(t)
Hα(P̂ (t0))− N(t1)

N(t)
Hα(P̂ (t1))

(3)
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where N(j) is the number of data points in a node j, while P̂ (j)
is the centroid of the empirical distributions of those data points.
We seek the leaf t and the split t0, t1 that maximizes N(t)/N×
S(t, t0, t1) by generating many candidate splits, as follows:

• We take the data at t (a collection of high-dimensional empirical
distributions) and compute J(J−1)/2 different PCA projections
onto a 2-dimensional probability simplex. Each projection is de-
termined by a pair of distinct eigenvectors (principal components)
from among the rst J eigenvectors. J is computed automatically
(separately for each t), by locating the “knee” on the scree plot5.
As mentioned earlier, [1] used the same J across all nodes.

• For each one of the projections computed at the previous step,
we seek a binary split of node t into two clusters t0, t1 in order to
maximize the Jensen-Rényi divergence S(t, t0, t1) of (3). Find-
ing the optimum split is a combinatorially hard problem, so we
resort to several runs of the exchange algorithm [14]. Each run
of the exchange algorithm is initialized with a different random
split, and uses S(t, t0, t1) as the optimization criterion to choose
exchanges.

From all runs of the exchange algorithm over all projections of
all leaf nodes t (a triple loop), we choose the split t, t0, t1 with the
highest S(t, t0, t1). Note that we are comparing S values that are
smoothed by different projections.

Finally, to further re ne the boundary between the chosen t0
and t1, we perform an iterative Na¨ve Bayes classi cation using the
unsmoothed, high-dimensional empirical distributions. We initialize
the procedure with t0 and t1 as initially computed. At each iteration,
new cluster centroids are computed, based on the most con dent
90% of the data set (i.e., the data points which are as far from the
boundary between the two clusters as possible, in terms of likelihood
ratio under a Na¨ve Bayes model). The same procedure was followed
in [1] as well.

4. EXPERIMENTS FROM TEXT CATEGORIZATION

We demonstrate the usefulness of the iterative denoising procedure,
combined with information-theoretic optimization criteria, with ex-
periments on a benchmark task of unsupervised document catego-
rization from the 20 Newsgroups corpus [10]. This corpus consists
of roughly 20,000 news articles, evenly divided among 20 UseNet
discussion groups. Document categorization is the task of decid-
ing whether a piece of text belongs to any of a set of prespeci ed
categories. It is a generic text processing task useful in indexing
documents for later retrieval, as a stage in natural language process-
ing systems, for content analysis, and in many other roles [15]. We
compare ISPDTs with 3 other unsupervised clustering techniques:
(i) the sequential Information Bottleneck (sIB) [3] (the Matlab code
is available on the web [16]), (ii) the EM-based Gaussian mixtures
clustering R package mclust [17], and (iii) K-means; we ran K-
means with 10 random initializations for the cluster centroids and
we averaged the results. Both mclust and K-means were fed with a
low-dimensional PCA projection of the data; the number of dimen-
sions was determined by locating the “knee” on the scree plot.

To compare our results with the Information Bottleneck method
(which has been shown to be very effective for document categoriza-
tion, matching the classi cation accuracy of supervised methods),

5To reduce computation time, we attempt to keep J small. At the root of
the ISPDT, we take J = min(L, 5). At other nodes, we choose J such that
the mean-squared error introduced by zeroing out the remaining eigenvectors
is no greater than what it was at the root.

we use the same exact documents as the ones used in [3]: three Bi-
nary data sets, three Multi5 data sets, and three Multi10 data sets,
each containing 500 documents6. We pre-process the documents as
follows (for all methods):
• Excluding the subject line, the header of each abstract is removed.
• Stop-words (such as a, the, is, etc.) are removed, and stemming is
performed (e.g., common suf xes such as -ing, -er, -ed, etc., are
removed). Also, all numbers are collapsed to one symbol, and
non-alphanumeric sequences are converted to whitespace. More-
over, as suggested in [18] as an effective method for reducing the
dimensionality of the feature space (number of distinct words),
all words which occur less than t times in the corpus are removed
(a similar thresholding was done in [3], as well). For the IB ex-
periments, we use t = 2 (as was done in [3]), while for the ISPDT
experiments we use t = 3; these choices result in the best perfor-
mance for each method, respectively.

• For each word in the vocabulary, the term frequency (tf) in each
document, and the inverse document frequency (idf—the number
of documents divided by the number of documents containing
the term) are computed. Then, each document is represented by a
vector v, whose elements correspond uniquely to the words in the
vocabulary, and have values according to the Okapi [19] formula

v(w) =
tf(w)

tf(w) + 0.5 + 1.5
`|d|/ ¯|d|´

p
log(idf(w)) (4)

where |d| is the length of document d, ¯|d| is the average length of
the documents in the collection, and tf, idf are the term frequency
and inverse document frequency respectively. The denominator
in (4) tries to limit the in uence of words which appear too many
times in a document—usually two or three occurences are enough
to signify the importance of a term. In addition, the idf component
discounts words which are very frequent in the whole collection,
and hence do not offer any gain in classi cation.

• As suggested in the information retrieval literature, each tf-idf
vector is normalized so that its norm is equal to one. An L2

(Euclidean) norm of 1 is used when projecting into the lower-
dimensional space through PCA, since PCA is suitable for pre-
serving L2 distances. But an L1 norm of 1 is used for the log-
likelihood ratio lists (the extra step that re-assigns the data points
to the clusters based on the high-dimensional information), so
that each data point becomes a probability vector.

4.1. Selecting α

Each of the nine datasets is clustered with ten different values of α,
namely α = 0.1, 0.2, . . . , 1.0.

It would be customary to choose α based on some supervised
held-out data. We use a re nement of this idea, based on the “strap-
ping” method of [2], where the supervised held-out data are not used
to determine the best α directly, but to learn what good ISPDT clus-
terings “look like”, i.e., on other properties of the clusters. Due to
lack of space, we present only a summary of this procedure; the de-
tails will appear in a subsequent publication.

6The Binary data sets contain documents from talk.politics.mideast,
talk.politics.misc, the Multi5 data sets contain documents from
comp.graphics, rec.motorcycles, rec.sport.baseball, sci.space,
talk.politics.mideast, and the Multi10 data sets contain documents
from alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos,
rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space,
talk.politics.guns. In all of these subsets, the documents are evenly
divided between the newsgroups.
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For each test condition (e.g., Binary), we perform the following
steps:

(i) We choose 5 held-out supervised datasets, by randomly choos-
ing documents whose labels (newsgroups) do not appear in the test
set. These classi cation problems are similar to the test condition but
do not give direct information about it. (ii) We cluster each labeled
data set using unsupervised ISPDTs, for α = 0.1, 0.2, . . . , 1.0. (iii)
We evaluate each of these 50 clusterings using the true labels. (iv)
We use a supervised ranking SVM [20] to learn how to predict the
true ranking of the 50 clusterings based on a number of features: the
average cosine of the angle (in the tf-idf space) between each data
point and the centroid of its assigned cluster, the average Rényi di-
vergence between the empirical distribution of each data point and
the empirical centroid of its assigned cluster, as well as other plausi-
ble features which combine α with various measures of “goodness”
of clusterings in general (speci c details will appear in the full ver-
sion of the paper). (iv) We apply the SVM model to rank the 10
unsupervised clusterings of the test data, based on the same features,
and we pick the highest-ranked clustering.

Set ISPDT [3] sIB Mclust K-means
Binary 5.7% 8.8% 7.3% 35.9% 37.6%
Multi5 9.5% 8.4% 9.5% 22.7% 26.9%
Multi10 38.5% 33.0% 40.3% 42.0% 45.5%

Table 1. Average classi cation errors for the text categorization task
of the 20 Newsgroups corpus. ISPDT results in bold are at least as
good as the corresponding sIB results (4th column).

4.2. Results

Table 1 shows the classi cation error results, averaged over the 3
data sets of each type (Binary, Multi5, Multi10). The column “[3]”
shows the average of the errors reported in [3], while column “sIB”
shows the result after applying the sIB code on the term-document
frequency matrix that was created through our pre-processing. (Note
that our pre-processing involves stemming, as well as possibly a dif-
ferent stop list from the one in [3]7.)

From these results we conclude: (i) ISPDTs, when combined
with Jensen-Rényi divergences, Na¨ve Bayes classi cation and “strap-
ping”, are competitive with the sequential Information Bottleneck,
which is considered the state-of-the-art in unsupervised document
categorization; (ii) the widely-used mclust and K-means have con-
sistently worse performance than ISPDTs. Moreover, the Jensen-
Rényi results are on average better8 than when α = 1.
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