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ABSTRACT

We propose a handwritten digit recognition algorithm that
uses 4x4 2D hidden Markov models to extract basic features
from an unclassi ed image. The novel idea given here is that
we use powerful techniques from the emerging mathematical
elds of tropical geometry and algebraic statistics to deter-

mine parameters for the model. The distance between the un-
classi ed images and prototypes is calculated in stages, where
estimates of the distance become ner as obviously distant
prototypes are discarded from the pool of possible K-nearest
neighbors. Our algorithm achieves a 95.51 percent recogni-
tion rate with zero rejection on the MNIST database of hand-
written digits.

Index Terms— Handwriting recognition, character recog-
nition, Hidden Markov models, feature extraction

1. INTRODUCTION

Handwritten digit recognition is an area of pattern recogni-
tion that has seen much active research in the past decade.
Various approaches have been taken to push recognition rates
to those near human performance. Most approaches involve
statistically based methods, due to their relative ease of im-
plementation as compared to semantic methods. Some such
methods include K-nearest-neighbor classi cation, convolu-
tional neural nets [1], shape matching [2], support vector ma-
chines [3], tree classi ers [4], tangent distance [5], and hybrid
methods based on outputs of multiple classi ers [6].

Graphical models such as the hidden Markov model
(HMM) have also been used in handwritten character recogni-
tion. Agazzi et al [7] employ a quasi-two-dimensionalmethod
called the planar hidden Markov model (PHMM) for recog-
nizing severely degraded text. Levin and Pieraccini [8] further
the idea of the PHMM by adding a dynamic planar warping
(DPW) algorithm to align a two-dimensional reference im-
age with an elastically distorted test image. Merialdo et al
[9] propose a two-dimensional Viterbi algorithm for the two-
dimensional hidden Markov model to be used for character
segmentation and recognition.

We propose to use a genuinely two-dimensional hidden
Markov model (2D HMM) [10] to extract features from un-

classi ed digit images, which are drawn from the MNIST
database (available at http://yann.lecun.com/exdb/mnist/).
Distances between unclassi ed digit images and prototypes
are computed hierarchically, that is, distance computations
become ner as the algorithm enters later stages and as pro-
totypes with large distances from the unclassi ed image are
removed from consideration.

This paper is the rst we know to use powerful techniques
from the emerging mathematical elds of tropical geometry
and algebraic statistics [11, 12] to perform character recogni-
tion. Other elds, such as computational biology, biostatis-
tics, and genomics, have incorporated these algebraic tools to
tackle problems in their respective areas. We hope that this
paper will inspire others to experiment with these novel tech-
niques for statistical analysis.

2. TWO-DIMENSIONAL HIDDEN MARKOV
MODELS (2D HMMS) AND NEWTON POLYTOPES

2.1. Two-dimensional HMM

The two-dimensional hidden Markov model has been largely
avoided in the literature because of its computational com-
plexity in training its parameters (exponential in n2). Meri-
aldo et al [9] provide a 2D Viterbi algorithm which claims
to achieve subexponential computational complexity. Li et al
[13] propose a 2D HMM image classi cation algorithm us-
ing both the 2D Viterbi and EM algorithms. We propose here
an algorithm for 2D HMM feature extraction, based on the
Newton polytope, which we describe later in this section.

The two-dimensional hidden Markov model that we em-
ploy [10] has the following properties:
1. Each hidden state Xi,j depends on its ”past” only through
its immediate left and immediate top neighboring states
X(i−1)n,j and Xi,(j−1)n

, where (x)n = x (mod n).
2. Each observation bit Yi,j depends only on its correspond-
ing hidden state Xi,j .
3. All random variables are binary variables (having values 0
or 1).
4. We denote P (Xi,j = m|X(i−1)n,j = k, Xi,(j−1)n

= l) =
ak,mal,m and P (Yi,j = l|Xi,j = k) = bk,l.
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For a xed observation Y = [yi,j ],

fY = P (Y )
=

∑
X∈Xn

∏
(i,j)

ax(i−1)n,j ,xi,j axi,(j−1)n ,xi,j bxi,j ,yi,j ,

(1)
where Xn = {0, 1}n×n. Here we assume that a00 = a10,
a01 = a11 =

√
1− a2

00, b00 = 1 − b01, b10 = 1 − b11. This
unfortunately limits the domain of allowable parameters λ =
[a00, a01, a10, a11, b00, b01, b10, b11], however, this will save
us computation in calculating the Newton polytope described
below.
Figure 1 gives a graphical representation of the 2D HMM.
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Fig. 1. Graphical representation of an n-by-n 2D HMM

2.2. Newton polytopes of 2D HMMs

In the budding mathematical elds of algebraic statistics and
tropical geometry [11], the Newton polytope, which is given
below, plays an important role in statistical inference.

Given a polynomial map f : Rm → R which can be
expressed as

f =
q∑

i=1

cix
νi,1
1 x

νi,2
2 ...xνi,m

m ,

the Newton polytope Newt(f) of f is de ned as the convex
hull of the point set N = {(νi,1, νi,2, ..., νi,m)|i = 1, ..., q},
i.e. Newt(f) = conv(N).

For a given observation Y ∈ Xn with a xed number
k of ones, we nd [10] that the Newton polytope is three-
dimensional and conjecture that the polytope has O(n2) ver-
tices.

Consider the 4x4 observation grid

Y =

⎡
⎢⎢⎣

1 1 1 1
0 1 1 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦

(a) Top view.

(b) Front view.

Fig. 2. Newton polytope for a 4-by-4 observation with 31
vertices

Figure 2 shows the Newton polytope Newt(Y ), which has the
maximal number of vertices for all observations in X4.

The usefulness of the Newton polytope has to do with its
vertices, namely, the vertices of the Newton polytope of a
polynomial map expressing the marginal probability (such as
fY above) of an observation correspond to the hidden states
that maximize the probability for a given set of parameters λ.

3. HANDWRITTEN DIGIT RECOGNITION
ALGORITHM

3.1. Feature extraction using Newton polytopes

We compute features by employing the Newton polytopes
arising from the 2D HMM. For each feature k we hope to ex-
tract in a 4x4 window – vertical line (�), horizontal line (↔),
diagonal lines (↗ and↘), all zeros (0), all ones (1) – we train
a 2D HMM for each representative feature grid Y = Y (k)

and select the parameter vector λ which maximizes P (Y |λ)
by using the tropical approximation

gY = min
X∈Xn

∑
(i,j)

[sxi,j ,x(i+1)n,j
+ sxi,j ,xi,(j+1)n

+ txi,j ,yi,j ],

(2)
where s·,· = − log(a·,·) and t·,· = − log(b·,·).

Let γ = − log(λ) and vX be the vector of powers of λ in
the monomial of fY corresponding to X . We can rewrite gY

as the following:

gY = min
X∈Xn

γ · vX = min
v∈V (Newt(Y ))

γ · v, (3)

where V (Newt(Y )) denotes the vertex set of Newt(Y ) and
the rightmost term is due to the fact that non-vertices vX ∈
Newt(Y ) will not minimize the inner product.
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Let A be the collection of features. After selecting a para-
meter vector γ(k) = − log(λ(k)) for each feature k, we com-
pute features k∗ for a 4x4 windowed image I by the follow-
ing:

k∗ = argmin
k∈A

{min
v∈V

< v, γ(k) >}, (4)

where V is the vertex set of Newt(I).
One note of caution: the 2D HMM is invariant to transla-

tions and rotations by multiples of 90 degrees, hence we need
additional information to distinguish between horizontal (↔)
and vertical (�) lines and diagonals (↗ and ↘). However, a
simple variance calculation can be set up to account for this
situation. In the case where the variance calculation does not
distinguish one from the other, we denote this the “unknown”
feature (given by ×).

To calculate the distance between features df (x, y), we
use the following expression:

df (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0, x = y
1, x = 0, y = 1
1
4 , x ∈ {↔, �,↗,↘}, y = ×
1
2 , otherwise

3.2. Hierarchical distance algorithm

Following Simard et al [5], at each stage k of the algorithm
we keep a pool Pk of prototypes which potentially contain
the K-nearest neighbors of the pattern P . For each prototype
Pi ∈ Pk, we compute the distance D

(k)
i between P and Pi.

We also compute the class label Lk and con dence score Ck

for each stage. The algorithm proceeds to the next stage if Ck

is below a certain threshold Tk, and we put the Nk best pro-
totypes (according to D

(k)
i ) in Pk into Pk+1. If Ck ≥ Tk, we

stop the algorithm and declare Lk as the classi cation for P .
The 28x28 images given in the MNIST database are centered
in a 32x32 zero-padded matrix for easier subsampling. We
use 8x8 subsampled Euclidean distance as D (1), 32x32 full
Euclidean distance as D(2), 8x8 (each 4x4 window without
overlap) feature distance as D(3), and 15x15 (4x4 windows
overlapping by 2 pixels horizontally and vertically) feature
distance as D(4).

4. RESULTS

We used the rst 50000 images in the MNIST training set as
prototypes, reserving the nal 10000 images for validation.
In addition, the MNIST database contains 10000 images for
testing the algorithm. The validation set was used for deter-
mining the constants Tk, Nk that maximize the recognition
rate.

With N1 = 50000, N2 = 5000, N3 = 20, N4 = 15, T1 =
10, T2 = 3, T3 = 3, we achieve 95.51 percent recognition
rate with zero rejection on the MNIST testing database.

5. CONCLUSION

The primary reason that the number of prototypes kept in the
pool P3 is so much smaller than those kept in P2 is that, even
though the Newton polytopes are conjectured to have O(n 2)
vertices, the process of determining those vertices takes much
more computation. The current process of determining (ap-
proximate) Newton polytopes is as follows:
1. First calculate the “essential” vertices (see [10]).
2. Compute a second layer of vertices which generally appear
for most observations Y .
3. Determine additional vertices by changing each vertex grid
by one pixel (n2 different grids for each vertex grid) and com-
pute the convex hull of the resultant expanded vertex set.
4. Mark all “new” vertices, return to step 3, and iterate either
until there are no new vertices or until a certain count (say,
ve) has been reached.

A subsequent experiment using 3x3 Newton polytopes for
feature extraction is currently being conducted. We suspect
that the process of computing Newton polytopes will be much
quicker in this case, since we have pre-calculated the Newton
polytopes for all 26 orbits in X3 [10], in which case we may
use a look-up table to determine the Newton polytopes for
each prototype.

We would also like to eventually use 28x28 Newton poly-
topes on the entire image, which would require for us to be
able to calculate the Newton polytope ef ciently and expedi-
ently. Additionally, we would have to nd a better approxi-
mation for the probability P (Y ) than that given by Equation
2.

In all, this novel method using a truly 2D hidden Markov
model for feature extraction performs quite well on a standard
handwritten digit database, and we can only imagine that our
results will improve as we learn more about the powerful tools
afforded us by tropical geometry and algebraic statistics.
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