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ABSTRACT

In this paper we apply distributed kernel regression methods
to perform sensor network localization. This follows up on
earlier work where a centralized kernel regression algorithm
was considered to perform localization. Here we examine
the tradeoffs between using distributed algorithms versus cen-
tralized algorithms in terms of communication costs, compu-
tational costs, and performance of the estimate. Simulation
results demonstrate that distributed methods work well with
comparable performance to centralized algorithms with less
communication costs.

Index Terms— distributed learning, kernel methods, sen-
sor network localization

1. INTRODUCTION

This paper extends previous work on ad hoc sensor network
localization problem using signal strength information by us-
ing distributed algorithms with kernel regression methods. The
earlier work used signal strength information to form infor-
mation vectors for each sensor, represent this information in a
kernel matrix, and then use either classi cation or regression
methods [1, 2, 9]. to perform localization. These algorithms
give good performance, but may be impractical as central-
ized algorithms require extensive signal strength information
from all sensors and this may not be feasible because of en-
ergy and communication constraints imposed on the sensors.
Signal strength between two sensors depends on the distance
between the sensors and we formulate a distributed algorithm
where sensors are rst partitioned into local regions, a kernel
regression problem is solved for each region, and then local-
ization is performed by resolving the local algorithms. Simu-
lation results show that the distributed algorithms can achieve
good performance and the tradeoffs between communication,
computation, and error performance.

Ad hoc sensor networks are being deployed in a variety of
applications from environmental sensing to security and in-

*Portions of this work were supported by RTI.

trusion detection to medical monitoring [3]. We will consider
the model developed in [1] consisting of base nodes where
the locations are known and simple nodes called motes where
the locations of the motes are unknown. In this model wire-
less radio is used where the received signal power / strength
is proportional to a power function of the distance between a
transmitter and a receiver [5], i.e.

s ∝ Pd−η, (1)

where s is the received signal strength, η > 2 is a constant,
P is the transmitting power, and d is the distance between the
transmitter and the receiver. Rich scattering in the real world
makes the received signal strength quite noisy.

Using the model of [1] an ad hoc network of size n is
deployed in a connected two-dimension geographical area T .
An integer from 1 to n represents each node as its ID. Denote
the set of all nodes in the network by N = {1, · · · , n}. The
location of node i ∈ N is denoted by Pi (a complex num-
ber with east-west coordinate represented by the real part and
north-south coordinate represented by the imaginary part).
Assume that the rst m nodes are base nodes, which have
more computational capabilities than motes and the locations
of the base nodes are known with P1 = p1, · · · , Pm = pm
where pi ∈ C. The base nodes are also able to get signal
strength information from the other base nodes. We need to
estimate the location of the other n − m motes which could
be mobile (i.e. to nd Pm+1, · · · , Pn).

As mentioned above signal strength information between
two nodes depends on the distance between the two nodes,
scattering, and additive noise. The localization problem con-
sists of a system with a set of parameters that are learned. The
input to the system is the signal strength information between
base nodes and the outputs are estimates of base node loca-
tions. The kernel methods used in [1, 2, 9] are based on rst
forming information vectors from signal strength and then us-
ing the information vectors to form kernels. Then Support
Vector Machine, [6] or least squares kernel methods [8] are
used to nd the parameters (i.e. support vector weights α and
threshold value b).
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This paper looks to improve previous kernel localization
algorithms by exploiting signal strength’s relationship to dis-
tance and the location of the base nodes to create distributed
kernel localization algorithms. These algorithms have similar
performance to centralized algorithms, but can take advan-
tage of parallel processing and reduced communication and
energy costs. The coarse localization / ne localization al-
gorithms discussed in [1, 2] are distributed algorithms, but
don’t take advantage of base node locations and information
about signal strength. A kernel regression algorithm was for-
mulated in [10] for sensor networks as the algorithm consid-
ered is based on Gaussian elimination and a message pass-
ing algorithm to converge to a centralized regression problem.
Distributed learning is also considered for sensor networks in
[11] using alternate projections. These methods are differ-
ent from those considered here as the distributed algorithms
are based on signal strength information and base node loca-
tions, the distributed algorithms are different than centralized
algorithms, and the resolution of the distributed algorithms is
based on weighting of local estimates.

The paper is organized as follows. Section 2 reviews the
centralized base node regression algorithm. Section 3 dis-
cusses training and testing of the distributed learning algo-
rithm. Simulations are conducted in Section 4 comparing dis-
tributed algorithms to the base node regression algorithm and
Section 5 summarizes the main contributions of this paper and
discusses some future research directions.

2. BASE NODE REGRESSION

The base node regression model is discussed in detail in [9]
and uses a least squares kernel subspace regression model [7].
For this model base nodes are stationary and motes can move.

These methods assume that there is a base node or a cen-
tral processor to collect all the signal strength readings be-
tween base nodes and to do the training using least squares
kernel methods discussed in [7]. Motes are given the sup-
port vector information vectors, support vector values α, and
threshold b. The motes then use equation (2) to estimate their
location.

The rst step is to choose an information vector from the
signal strength readings of the base nodes. Corresponding to
each base node i, 1 ≤ i ≤ m will be an information vector
of length m where the jth component describes the signal
strength, s(pj , pi) from node j to node i. The information
vector is described by

xi =

⎡
⎢⎢⎢⎣

s(p1, pi)
s(p2, pi)
...
s(pm, pi)

⎤
⎥⎥⎥⎦ .

The m information vectors correspond to m training ex-
amples. The output, pi for each training example is the loca-

tion of the base node. We then use mS of these information
vectors as support vectors. We can use a selection criteria
discussed in [7] or an unsupervised algorithm such as the k-
Means algorithm (based on locations) to choose support vec-
tors. The least squares kernel subspace regression algorithm
is then applied to get the parameters α and b.

For mote j, m < j ≤ n we then form an information
vector from signal strengths to get

xj =

⎡
⎢⎢⎢⎣

s(p1, pj)
s(p2, pj)
...
s(pm, pj)

⎤
⎥⎥⎥⎦ .

The mote then uses the following equation to estimate its own
location at time.

f(xj) =
m∑
i=1

αiK(xj , xi) + b), m < j ≤ n (2)

3. DISTRIBUTED LEARNING ALGORITHM

This section examines a distributed kernel learning algorithm
that considers base node locations and signal strength infor-
mation.

3.1. Training base nodes

The distributed algorithm consists of two steps. We rst par-
tition the base nodes into different regions. Each region then
comes up with an estimate for location of a sensor based on
parameters α and threshold value b. The location estimate
will be more accurate in the region where base nodes are lo-
cated, then outside the region.

We partition base nodes into r different sets. Set R(i),
1 ≤ i ≤ r will also be called region R(i) which consists
of base nodes j1, . . . , jr(i) where r(i) ≥ 1 is the number of
base nodes in the ith region. Since estimation algorithm is
based on signal strength which is directly dependent on dis-
tance, base nodes within a region should for the most part be
closer in distance than when compared to base nodes outside
the region. Different algorithms can be used to partition the
base nodes into the different regions with a goal of having a
computationally ef cient algorithms that can take advantage
of parallel processing such as a distributed k-Means algorithm
discussed in [12]. Base nodes in each region will also have a
tag identifying region.

After partitioning into regions, each region will use the
subspace kernel regression algorithm to come up with a set
of parameters α that are associated with base nodes that are
support vectors and threshold value b. Let S(i) denote the
set of all nodes that will be used in the regression algorithm
for the ith region with R(i) ⊂ S(i). Each node in S(i) will
have signal strength with at least one node of R(i) that is
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greater than some speci ed threshold value s0. For region i
information vector for sensor i′ will be given by

x(i′)[i] = (s(j, i′), j ∈ S(i))T

and the estimate for the location of sensor i′ is given by

p̂(i′)[i] =
∑

j∈S(i)
αj [i]K(x(i′)[i], x(j)[i]) + b[i]. (3)

When the subspace algorithm is used a subset of base nodes
in S(i) will be support vectors and only these nodes will have
nonzero α values. Each region will have its own estimate of
location so there will be a total of r different estimates for
location of sensor i′. Region i will have an estimate with
parameters given by α[i] and b[i] with each base node in i
storing these set of parameters.

Remark 1: The algorithm’s most critical parameter is r
the number of regions. If r = 1, then this corresponds to
centralized base node regression where one subspace kernel
regression is performed on the m base nodes. If r = m, then
every base node performs a subspace kernel regression algo-
rithm and this is similar to the k nearest neighbors algorithm.
Good values for r depend on the number of base nodes m,
their physical deployment, and signal strength. Let mS(i) de-
note the number of support vectors for region i and mi be the
cardinality of S(i). Note that mS(i) will depend on the signal
strength of nodes in S(i) and the desired accuracy we would
like. Finding α[i] and b[i] for least squares kernel regression
involves matrix multiplication and inversion operations. This
will take O(mS(i)

3 +mS(i)
2m(i)) operations.

Remark 2: For most ad hoc sensor networks, the sensors
will be deployed over a wide geographical range with only
a few base node sensors having strong signal strength with a
given mote. This will result in only a few of the regions hav-
ing signi cant nonzero information vectors for a given mote.
In general, only a few regions will be part of the location es-
timate of a given mote.

3.2. Mote Localization

Each mote will store information about regions that are in
close proximity to the mote. These are base nodes in regions
that have signal strength greater than a certain threshold value
s0. For each region i that is of close proximity, the mote will
store α[i] and b[i], and information vectors for base nodes
in region i. The mote i′ will get its own information vector
x(i′)[i] and then compute its location estimate from region i,
p̂(i′)[i]. The mote i′ will compute a location estimate for each
of the regions it is in close proximity to. It will then compute
a location estimate that is the weighted average of the location
estimate of each region that is in close proximity to the mote.
The weighting will depend on the number of base nodes in i
that are close to mote i′ and their signal strengths. Let N(i′)
denote the set of regions that are in close proximity to mote

i′, then the location estimate is given by

p̂(i′) =
∑

i∈N(i′)

w(i)p̂(i′)[i] (4)

where the weights w(i) are positive numbers that sum to 1.
Weights are given by

w(i) =

∑
j∈R(i) g(s(j, i

′))∑m
j=1 g(s(j, i′))

(5)

with possible values for weighting functions g() including
g(z) = z and g(z) = 1(z > s0) with 1() denoting an in-
dicator function.

If the motes are mobile, then the regions that are in close
proximity to the mote will change. The mote will have to
update the regions that are in close proximity to the mote and
get parameters and information vectors as needed.

Remark 3: The computational and communication costs
to estimate a mote’s location will depend on the number of
regions and signal strengths. Again, the key parameter is r,
the number of regions chosen. The number of regions should
be chosen to balance the error rate, computational, and com-
munication costs.

4. SIMULATIONS

Several simulations were conducted to test the performance of
the centralized and distributed kernel regression localization
algorithm. Sensors were placed on a 10 by 10 grid. There
were m = k2 base sensors placed on a grid and then the
locations were perturbed by additive Gaussian noise. There
were 400 motes placed randomly on the grid. The same sig-
nal strength models as [1] were used with additive noise that
had deviation τ = 0.2. For centralized base node regres-
sion the subspace algorithm was used with 3k support vec-
tors. Fig. 1 shows how the mean localization error varies as
the number of base sensors increases and Σ (signal strength
parameter) is varied. Simulations were conducted 100 times
for each setting with average curves and standard deviations
shown. Fig. 2 shows similar plots for the distributed algo-
rithm. Here the base nodes were partitioned using the k-
Means algorithm with k regions and 7 support vectors used
for each region. The error performance is very close to the
centralized base node performance and actually give slightly
better results when Σ is small. Computationally, distributed
algorithm requires slightly more computations than the cen-
tralized method, but large savings can be realized if the base
nodes perform computations in parallel. The distributed algo-
rithm saves in communication costs as motes need to only get
signal strength information from base nodes that are close to
motes.

II  499



2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of base nodes per dimension

M
ea

n 
lo

ca
liz

at
io

n 
er

ro
r

Σ=1
Σ=3
Σ=5

Fig. 1. Centralized base node regression with Gaussian ker-
nels
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Fig. 2. Distributed regression with Gaussian kernels, r = k,
7 SV

5. SUMMARY AND FURTHER DIRECTIONS

This paper discusses a distributed kernel regression algorithm
to perform sensor localization. The distributed algorithm can
achieve similar performance to centralized algorithms while
reducing communication costs and taking advantage of par-
allel processing capabilities of the sensor network. There are
many further directions for this work including analyzing per-
formance and determining optimal number of regions r. The
distributed algorithms can also be used to get other informa-
tion from the sensors and to track mobile sensors.
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