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ABSTRACT

We propose a 2-plane learning method for binary classifica-

tion, named as the strict 2-surface proximal (S2SP) classifier,

by seeking two cross proximal planes based on two strict opti-

mization objectives with a “square of sum” optimization fac-

tor, of which the nonlinearity is achieved by employing kernel

functions. We apply the S2SP classifier for both linear and

nonlinear classification to recognize malignant tumors from a

set of 57 regions in mammograms, of which 20 are related to

malignant tumors and 37 to benign masses. Ten different fea-

ture combinations are studied. Experimental results demon-

strate that the linear S2SP classifier provides results compa-

rable to those obtained by Fisher linear discriminant analysis

(FLDA). For one feature set (FS8, see Table 2), the linear

classification performance was significantly improved to 0.97
by using the S2SP classifier, as compared to the FLDA per-

formance of 0.82, in terms of the area under the receiver op-

erating characteristics (ROC) curve. In the case of nonlinear

classification, the S2SP classifier with the triangle kernel pro-

vided a perfect performance of 1.0 for all of the ten feature

combinations, also evaluated in terms of the area under the

ROC curve, but with good robustness limited to the setting of

the kernel parameter in a certain range.

Index Terms— Multiplane learning, proximal classifica-

tion, square of sum, breast cancer, breast tumors

1. INTRODUCTION

Multiplane learning is a comparatively new machine learning

method developed in recent years. Bradley and Mangasar-

ian [1] addressed the topic of multiplane learning by propos-

ing the unsupervised k-plane clustering method. Later, series

of studies were conducted on multiplane learning for super-

vised pattern classification [2, 3, 4]. Proximal support vec-

tor machines (PSVMs) [2] generate two parallel planes such

that each plane is closer to one of the two data sets to be

classified while also being as far apart as possible. Pal et

al. [3] proposed a fuzzy extension of PSVM via general-

ized eigenvalues. More recently, Mangasarian and Wild [4]

dropped the parallel condition in the PSVM, which leads to

the multisurface PSVM (MPSVM) via the solution of a gen-

eralized eigenvalue problem. In their study, a Tikhonov reg-

ularization term is employed to improve the performance of

the MPSVM. However, MPSVM users face the problem of

tuning the regularization parameter δ for the regularized δ-

MPSVM, of which the performance is sensitive to the setting

of δ.

In this work, we propose a strict 2-surface proximal (S2SP)

learning method without any regularization term, which seeks

two planes for binary classification by employing a “square of

sum” optimization factor. Compared with the MPSVM clas-

sifier, the “square of sum” form leads to two stricter optimiza-

tion objectives for the S2SP classifier. We apply the proposed

method to recognize malignant tumors from a set of 57 re-

gions in mammograms, of which 20 are related to malignant

tumors and 37 to benign masses, and compare the results with

those obtained by Fisher linear discriminant analysis (FLDA),

as well as those obtained by André and Rangayyan [5] using

artificial neural networks (ANNs), and Alto et al. [6] using

linear discriminant analysis (LDA), to demonstrate the effi-

ciency of the S2SP classifier.

2. THE S2SP CLASSIFIER

Given a set of l labeled training samples z = {(xi, yi)}l
i=1 ∈

(Rn × Y ), where Rn is the n-dimensional real feature space

with a binary label space Y = {1,−1}, and yi ∈ Y is the

label assigned to the sample xi ∈ Rn, the purpose of binary

classification is to seek the best prediction of the label for an

input sample x. The basic idea of proximal classification [2,

4] is to seek two proximal planes in a corresponding feature

space, i.e., Rn:

f1(x) = ωT
1 x + b1 = 0, (1)

f2(x) = ωT
2 x + b2 = 0, (2)
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where ω and b are the weight vector (direction) and bias of

the proximal planes, respectively; the subscripts 1 and 2 de-

note the first and second plane, respectively; the first plane

is closest to the points of the positive class and farthest from

the points of the negative class, whereas the second plane is

closest to the points of the negative class and farthest from the

points of the positive class.

For the S2SP classifier, we propose to seek the two proxi-

mal planes by maximizing two strict objectives with numera-

tors in the “square of sum” form, given by

[∑l
i=1(1− yi)f1(xi)

]2

∑l
i=1(1 + yi)f2

1 (xi)
, (3)

[∑l
i=1(1 + yi)f2(xi)

]2

∑l
i=1(1− yi)f2

2 (xi)
. (4)

For linear classification, with f1(x) and f2(x) given in

Eq.(1) and Eq.(2), Eq.(3) leads to the following objective func-

tion to obtain the first proximal plane:

O′1(ω, b) =
�X−ω + eb�2
‖X+ω + eb‖2 , (5)

where e is a column vector with all elements equal to 1; �vector�
is used to denote the sum of the elements of the vector; and

�matrix� is used to denote a column vector with the sum of

each row. To obtain the second proximal plane, Eq.(4) leads

to the following objective function:

O′2(ω, b) =
�X+ω + eb�2
‖X−ω + eb‖2 . (6)

Letting � = [ω, b]T and X̃+ =
[

X+ e
]
, X̃− =[

X− e
]
, the optimal solution of Eq.(5) and Eq.(6) can

be calculated by solving two generalized eigenvalue prob-

lems based on two Rayleigh quotients derived from Eq.(5)

and Eq.(6), respectively, given by

�∗
1 = Q−1

1 �X̃−�, (7)

�∗
2 = Q−1

2 �X̃+�, (8)

where

Q1 = (X̃+)T X̃+, Q2 = (X̃−)T X̃−.

For nonlinear classification, in the transformed kernel fea-

ture space κ, by expanding the weight vectors of the planes

into a linear summation of all training samples, the following

two kernel-based proximal planes are employed:

f1(x) =
l∑

i=1

α1,iK(xi, x) + b1 = 0, (9)

f2(x) =
l∑

i=1

α2,iK(xi, x) + b2 = 0, (10)

where K(·, ·) is a kernel function used to compute the in-

ner product matrix, the so-called kernel matrix, on pairs of

samples in the transformed feature space κ. By incorporating

Eq.(9) into Eq.(3), we get the following objective function to

be maximized for the first plane:

O′κ1(ω, b) =
�K−α + eb�2
‖K+α + eb‖2 , (11)

where the l+ × l matrix K+ represents the kernel matrix be-

tween the samples from the positive class and all the train-

ing samples, and the l− × l matrix K− represents the kernel

matrix between the samples from the negative class and all

the training samples. For the second plane, by incorporating

Eq.(10) into Eq.(4), the function to be maximized is

O′κ2(ω, b) =
�K+α + eb�2
‖K−α + eb‖2 . (12)

Letting α̃ = [α, b]T and adding a column with all elements

equal to 1 to the kernel matrices of K+ and K− as

K̃+ =
[

K+ e
]
, K̃− =

[
K− e

]
,

the optimal solution of Eq.(11) and Eq.(12) can be derived as

α̃∗1 = Q−1
κ1 �K̃−�, (13)

α̃∗2 = Q−1
κ2 �K̃+�, (14)

where

Qκ1 = (K̃+)T K̃+, Qκ2 = (K̃−)T K̃−.

There are no extra parameters to be tuned, except for the ker-

nel parameter for nonlinear classification, which is necessary

for all kernel-based methods.

To seek the two proximal planes, the MPSVM classifier,

proposed by Mangasarian and Wild [4], maximizes two ob-

jectives with the numerator parts given by
∑l

i=1(1−yi)f2(xi)
that are in the “sum of squares” form, compared with the

numerator parts in Eq.(3) and Eq.(4) that are in the “square

of sum” form. Mangasarian and Wild [4] also introduced

Tikhonov regularization terms into their optimization objec-

tives to reduce the norm of (ω, b), which efficiently improves

the performance of the MPSVM classifier. For our proposed

S2SP classifier, the optimal solution of the two proximal planes

is provided by employing the “square of sum” numerator,

with consideration of the sign effect under the situation of

misclassification with large projections onto the separating

plane. In the case of the MPSVM classifier, the performance

is improved by employing the Tikhonov regularization term.

However, the performance of the regularized δ-MPSVM is

sensitive to the setting of the regularization parameter δ.
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Feature sets Features used

FS1 Fcc, A
FS2 Fcc and f8

FS3 Fcc, A, and f8

FS4 A, Co, and CV
FS5 A and f8

FS6 14 texture features

FS7 Fcc and 14 texture features

FS8 A, f4, f6, f7, f8, f9, and f14

FS9 Fcc, f3, f4, f5, and f12

FS10 All 18 features

Table 1. Different feature combinations used in the study.

3. EXPERIMENTS AND RESULTS

Fifty-seven regions in mammograms, of which 20 are related

to malignant tumors and 37 to benign masses, are used in

this study, obtained from “Screen Test: Alberta Program for

the Early Detection of Breast Cancer” [6, 7]. Eighteen real-

valued features are considered for each sample, including one

shape feature known as fractional concavity (Fcc), three edge-

sharpness features known as acutance (A), contrast (Co), and

coefficient of variation (CV ), as well as 14 texture features

known as energy (f1), contrast (f2), correlation (f3), sum of

squares (f4), inverse difference moment (f5), sum average

(f6), sum variance (f7), sum entropy (f8), entropy (f9), dif-

ference variance (f10), difference entropy (f11), information

measure of correlation (f12 and f13), and maximal correla-

tion coefficient (f14) [6]. Ten different feature combinations,

as listed in Table 1, were studied in this work, of which the

feature combinations FS8 and FS9 were from the feature se-

lection results using genetic algorithm. The nonlinearity of

the S2SP classifier was achieved by employing the triangle

kernel, given by

K(xa, xb) = max
(

1− ‖xa − xb‖√
2σ

, 0
)

, (15)

where σ is the kernel width set by the user. The leave-one-

out (LOO) procedure was used to evaluate the classification

performance for both linear and nonlinear classifiers, because

of the small size of the dataset. All of the features were nor-

malized before being classified. Classification performance is

shown in terms of the area under the receiver operating char-

acteristics (ROC) curve, named Az , generated by applying a

sliding threshold with the LS-SVMlab1.5 toolbox [8].

3.1. Linear Classification

In this experiment, the linear S2SP classifier without using

any kernel function, as well as FLDA were applied on the ten

different feature combinations as listed in Table 1, of which

the corresponding performance in Az values is recorded in

S2SP FLDA Others

Features Az SE Az1 SE Az2

FS1 0.997 0.004 0.997 0.004 0.98 [6]

FS2 0.997 0.004 0.999 0.002 0.99 [6]

FS3 0.997 0.004 0.997 0.004 0.99 [6]

FS4 0.71 0.08 0.72 0.09 0.62 [5]

FS5 0.76 0.06 0.79 0.07 0.76 [6]

FS6 0.68 0.07 0.63 0.08 0.65 [5]

FS7 0.79 0.05 0.99 0.008 N/A

FS8 0.97 0.02 0.82 0.07 N/A

FS9 1.0 0.0 0.99 0.006 N/A

FS10 0.94 0.03 0.95 0.03 N/A

Table 2. Linear classification performance in Az values for

different feature combinations using the S2SP classifier in the

original feature space (Az), and the results of FLDA (Az1) as

well as the results obtained by André and Rangayyan [5] and

Alto et al. [6] (Az2) for comparison. SE denotes the standard

error. Significantly improved Az values are shown in bold.

Table 2, and compared with those obtained by André and Ran-

gayyan [5] using the single-layer perceptron, and by Alto et

al. [6] using LDA. Proximal planes learned by the S2SP clas-

sifier as well as the decision boundary learned by FLDA with

the feature set FS1 are shown in the part (a) of Fig. 1. It

can be seen from Table 2 that the linear classification perfor-

mance obtained by the S2SP classifier is comparable to those

obtained by FLDA, and better than those obtained by Alto et

al. [6] and André and Rangayyan [5] for most feature com-

binations. It is worth mentioning that the linear classification

performance of feature sets FS6 and FS8 in Az values has

been significantly improved to 0.68 and 0.97 by using the

S2SP classifier, respectively, which is much better than the

FLDA performance of 0.63 and 0.82; for feature set FS9, the

perfect performance of Az = 1.0 was reached. However, it

should be remarked that the proximal classification method

does not perform well for all cases, compared with the dis-

criminative classification method. For feature set FS7, the

performance of the S2SP classifier is not satisfactory.

3.2. Nonlinear Classification

In this experiment, the S2SP classifier with the triangle ker-

nel given in Eq.(15) was applied to the same ten feature com-

binations as listed in Table 1. It was found that all the ten

feature combinations could reach the perfect performance of

Az = 1.0 by employing the triangle kernel with an appro-

priate kernel width σ for the S2SP classifier. The selected

values of the kernel parameter σ to reach the perfect perfor-

mance of Az = 1.0, for the ten feature combinations, are

recorded in Table 3. However, it was observed that most of

the feature combinations are robust to variation of σ in cer-

tain limited intervals. We show a plot of the variation of the

nonlinear classification performance in Az values versus dif-
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Fig. 1. (a): Proximal planes of the S2SP classifier and the

decision boundary of FLDA. (b): Variation of the nonlinear

classification performance.

FS1 FS2 FS3 FS4 FS5

log10 σ -1.5 -2.3 -1.4 -1.6 -1.7

FS6 FS7 FS8 FS9 FS10

log10 σ -2.8 -1.7 -2.1 -1.9 -2.3

Table 3. Parameter settings of σ for different feature sets,

using the S2SP classifier with the triangle kernel, in order to

obtain Az = 1.0.

ferent values of log10 σ for the feature set FS4 by using the

S2SP classifier with the triangle kernel in part (b) of Fig. 1.

It can be seen that the Az value varies significantly for dif-

ferent values of log10 σ, especially when log10 σ is less than

0. Similar results were observed for the other feature combi-

nations. Further study is in progress on the evaluation of the

robustness around the selected kernel parameter values, and

on optimization of the kernel parameter itself.

4. CONCLUSION

We have proposed the S2SP classifier for both linear and non-

linear pattern classification. The classifier seeks two proxi-

mal planes in a corresponding feature space by maximizing

two strict optimization objectives with the “square of sum”

optimization term. The S2SP classifier was applied to iden-

tify malignant tumors from a set of 57 regions in mammo-

grams, of which 20 are related to malignant tumors and 37

to benign masses. Experimental results demonstrate the ef-

fectiveness of the linear S2SP classifier in terms of improved

performance as compared to that obtained by FLDA. More

importantly, with the nonlinear S2SP classifier, by employ-

ing the triangle kernel with an appropriate kernel width σ, all

of the feature combinations tested could achieve the perfect

performance of Az = 1.0, but with instability to variation of

σ. The S2SP classifier has shown promise in improving the

accuracy of discriminating between benign breast masses and

malignant tumors based on features that provided weak per-

formance using classical pattern recognition methods. The

proposed methods should find application in computer-aided

detection and diagnosis of breast cancer.
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