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ABSTRACT

This paper proposes Hidden Markov Eigenface Models (HMEMs)
in which the eigenfaces are integrated into Separable Lattice Hid-
den Markov Models (SL-HMMs). SL-HMMs have been proposed
for modeling multi-dimensional data, e.g, images, image sequences,
3-D objects. In its application to face recognition, SL-HMMs can
perform an elastic image matching in both horizontal and vertical
directions. However, SL-HMMs still have a limitation that the obser-
vations are assumed to be generated independently from correspond-
ing states; it is insuf cient to represent variations in face images,
e.g., lighting conditions, facial expressions, etc. To overcome this
problem, the structure of Probabilistic Principal Component Analy-
sis (PPCA) and Factor Analysis (FA) is used as a probabilistic rep-
resentation of eigenfaces. The proposed model has good properties
of both PPCA/FA and SL-HMMs: a linear feature extraction and
invariances to size and location of images. In face recognition ex-
periments on the XM2VTS database, the proposed model improved
the performance signi cantly.

Index Terms— Face recognition, Eigenfaces, Hidden Markov
models, Probabilistic principal component analysis, Factor analysis

1. INTRODUCTION

In face recognition, appearance-based approaches have been exten-
sively investigated in which pixel values are directly used as a feature
vector and applied statistical analysis to extract an ef cient represen-
tation of images. Eigenface method [1] is one of the most popular
methods belonging to this category. A linear feature extractor which
is called “eigenfaces” is constructed by applying the Principal Com-
ponent Analysis (PCA) to all training images of all classes. Face im-
ages are projected and classi ed on the subspace spanned by eigen-
faces. Subspace method [2] is also a well known pattern recognition
technique based on PCA and frequently applied to appearance based
face recognition. This method assumes that class dependent linear
subspace can represent variations of class images and the distance of
an input image from the subspace is used as a similarity measure for
the particular class. Although the classi cation measures are differ-
ent among these methods, a linear feature extraction based on statis-
tical analysis is an effective and principal technique for face recog-
nition. However, if face images contain variations such as size and
location (geometric variations), the recognition performance is sig-
ni cantly degraded, because it is inef cient to represent the change
of size and location by a linear combination of eigenfaces. To avoid
this problem, normalization processes for geometric variations are
required prior to applying these methods.

Hidden Markov Model (HMM) based approaches are one of
techniques which can deal with the geometric variations. The geo-
metric matching between input images and model parameters is rep-
resented by discrete hidden variables and the normalization process

is included in the calculation of probabilities. However, the exten-
sion of HMMs to multi-dimensions generally leads to an exponen-
tial increase in the amount of computation for its training algorithm.
To reduce the computational complexity while retaining the good
properties for modeling multi-dimensional data, Separable Lattice
Hidden Markov Models (SL-HMMs) have been proposed [3]. The
SL-HMMs have the composite structure of multiple hidden state se-
quences which interact to model the observation on a lattice. In case
of 2-D lattices, the SL-HMM performs an elastic matching in both
horizontal and vertical directions; this makes it possible to model not
only invariances to the size and location of an object but also non-
linear warping in each dimension. However, SL-HMMs still have a
limitation in its application of face recognition: the observations are
assumed to be generated independently from corresponding states,
it is insuf cient to represent variations in face images, e.g., lighting
condition, facial expression, etc.

In this paper, we propose Hidden Markov Eigenface Models
(HMEMs) in which eigenfaces are integrated into SL-HMMs. In
the proposed model, the eigenfaces are represented by probabilistic
latent variable models, such as Probabilistic Principal Component
Analysis (PPCA) and Factor Analysis (FA). The proposed model has
good properties of both the PPCA/FA and SL-HMM: a linear feature
extraction based on statistical analysis and size and location invari-
ant image recognition. The parameters of HMEMs can be estimated
via the expectation maximization (EM) algorithm for approximating
the Maximum Likelihood (ML) estimate. However, similarly to the
training of SL-HMMs, the exact expectation step is computation-
ally intractable. To derive a feasible problem, we applied the varia-
tional EM algorithm to HMEMs. Variational methods approximate
the posterior distribution over the hidden variables by a tractable dis-
tribution. A structure approximation is presented in which the factor
variables and the hidden state sequences and are decoupled.

The rest of the paper is organized as follows. Section 2 describes
probabilistic representations of eigenfaces using PPCA and FA, and
section 3 explains SL-HMMs brie y. In section 4 and 5, we de ne
the structure of HMEMs and derive its training algorithm, respec-
tively. In Section 6, we describe face recognition experiments on the
XM2VTS database and nally conclude in Section 7.

2. PROBABILISTIC EIGENFACE MODELS

Probabilistic Principal Component Analysis (PPCA) and Factor anal-
ysis (FA) are statistical methods for modeling the covariance struc-
ture with a small number of latent variables [4], [5]. A d-dimensional
observation vector � is assumed to be generated from a q-dimensional
factor vector (q < d) and a d-dimensional noise vector:

� =��+ � (1)

where� is a d× q matrix known as the factor loading matrix. The
vector � is a latent variable assumed to be distributed according to a
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Gaussian density N (0, �) and the noise vector � is distributed ac-
cording to N (�,Σ). If Σ is assumed to be a diagonal matrix, this
model is called FA, and PPCA is a special case of FA in which the
noise is isotropic, Σ = σ2� . The output probability of the observa-
tion � given � can be written as

P (� |�,Λ) = N (� |��+ �,Σ) (2)

because the product�� becomes a constant vector and added to the
noise vector �. Therefore, the marginal distribution of observation
� is obtained by integrating out the latent variable �:

P (� |Λ) =

�
P (� |�,Λ)P (� |Λ)d�

= N (�,��
� +Σ) (3)

From the above equation, it is obvious that PPCA/FA is a Gaussian
distribution whose covariance matrix is constrained by the loading
matrix and the noise covariance matrix. Therefore, PPCA/FA can
capture the correlation structure among observations by a small num-
ber of parameters instead of using the full covariance matrix.

It is known that the maximum likelihood solution of PPCA nd
the subspace spanned by the principal eigenvectors of covariance
matrix obtained by the conventional PCA [4]. In the proposed model,
the eigenface method and the subspace method are performed by
PPCA/FA instead of the conventional PCA. It should be noted that
the subspace method using the conventional PCA is not exactly the
same as the classi er using PPCA, because PPCA is a constrained
Gaussian distribution and it takes into account of the probability of
the factor vector. Taking the limit as σ2 → 0, PPCA is equivalent
to the subspace method, though the density model becomes singu-
lar. The eigenface method using a single global projection can also
be represented by the probabilistic form in which the parameters of
the loading matrices are shared among all classes. Accordingly, al-
though many structures can be considered in the presented frame-
work, this paper focuses on the case that PPCA/FA are applied for
modeling data of each classes individually.

3. SEPARABLE LATTICE HMMS

The separable lattice hidden Markov models (SL-HMMs) are de-
ned for modeling multi-dimensional data. The observations of M -

dimensional data, e.g., pixel values of an image and image sequence,
are assumed to be given on a M -dimensional lattice:

� = {�� | � = (t(1), . . . , t(m), . . . , t(M)) ∈ 	 } (4)

where � denotes the coordinates of the lattice in M -dimensional
space 	 and t(m) = 1, . . . , T (m) is the coordinate of the m-th di-
mension. The observation �� is emitted from corresponding state
indicated by the hidden variable 
� ∈ � . The hidden variable

� ∈ � can take one of K =

�
mK(m) states which assumed

to be arranged on an M -dimensional state lattice� = {1, . . . , K}.
Since the observation �� is dependent only on the state 
� as in
ordinary HMMs, dependencies between hidden variables determine
the properties and the modeling ability of multi-dimensional HMMs.

To reduce the number of possible state sequences, we constrain
the hidden variables to be composed of M Markov chains:


 = {
(1), . . . ,
(m), . . . ,
(M)} (5)



(m) = {S(m)

1 , . . . , S
(m)

t(m) , . . . , S
(m)

T (m)} (6)

where 
(m) is the Markov chain along with the m-th coordinate and
S
(m)

t(m) ∈ {1, . . . ,K(m)}. In separable lattice HMMs, the composite

structure of hidden variables is de ned as the product of hidden state
sequences:


� = (S
(1)

t(1)
, S

(2)

t(2)
, . . . , S

(M)

t(M)) (7)

This means that in the 2-D case, the segmented regions of observa-
tions are constrained to be rectangles and this allows an observation
lattice to be elastic in both vertical and horizontal directions.

The joint probability of observation vectors � and hidden vari-
ables 
 can be written as

P (�,
 |Λ)

= P (� |
,Λ)
M�
m=1

P (
(m) |Λ) (8)

=
�
�

P (�� |
�,Λ)×

M�
m=1

�
�P (S

(m)
1 |Λ)

T (m)�
t(m)=2

P (S
(m)

t(m) |S(m)

t(m)−1,Λ)

�
� (9)

In the application of image modeling, SL-HMMs can perform an
elastic matching in both horizontal and vertical directions by assum-
ing the transition probabilities with left-to-right and top-to-bottom
topologies. The training algorithm for the SL-HMMs using the vari-
ational EM algorithm are derived in [3].

4. HIDDEN MARKOV EIGENFACE MODELS

Hidden Markov Eigenface Models is de ned as an integration of the
PPCA/FA models and the SL-HMM. The basic idea of the proposed
model is that the eigenfaces are generated from an SL-HMM. Fig-
ure 1 shows the graphical representation for HMEMs and the likeli-
hood function is de ned as follows:

P (� |Λ) =
�
�

�
P (� |�,
,Λ)P (� |Λ)P (
 |Λ)d� (10)

where � and 
 correspond to the factor vector of PPCA/FA and the
state variables of SL-HMMs, respectively.

P (� |Λ) = N (0, �) (11)

P (
 |Λ) =

M�
m=1

P (
(m) |Λ) (12)

The output probabilities given � and 
 is de ned as

P (� |�,
,Λ) =
�
�

P (�� |�,
�,Λ) (13)

=
�
�

N (�� |���
�+ ���

,Σ��
) (14)

where ���
corresponds to the row elements of the loading ma-

trix, and ���
and Σ��

denote the mean vector and covariance ma-
trix of noise vector, respectively. Incorporating the state transition
structure into the loading matrix, eigenfaces can be transformed to
match an input image and it performs size and location normaliza-
tion. Once the state sequences are given, HMEMs are regarded as
PPCA/FA models which are applied on the normalized data. There-
fore, HMEMs overcome the limitation of SL-HMMs, i.e., the corre-
lation among all observations can be modeled throughout the factor
variables as well as the standard PPCA/FA. Thus, HMEMs have the
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Fig. 1. Graphical representation for HMEMs.

both properties of PPCA/FA and SL-HMMs: a linear feature extrac-
tion based on statistical analysis and invariances to size and location
of images. Moreover, the structure of HMEMs includes conventional
PPCA/FA and SL-HMMs as special cases: HMEMs with zero fac-
tor become the conventional SL-HMMs, and HMEMs which have
the same number of states as input images are equivalent to the con-
ventional PPCA/FA.

5. TRAINING ALGORITHM FOR HMEMS

The parameters of HMEMs can be estimated via the expectation
maximization (EM) algorithm which is an iterative procedure for ap-
proximating the Maximum Likelihood (ML) estimate. This proce-
dure maximizes the expectation of the complete data log-likelihood
so called Q-function:

Q(Λ,Λ′) =
�
�

�
P (�,� |�,Λ) lnP (�,�,� |Λ′)d� (15)

By maximizing theQ-function with respect to model parameters Λ,
the re-estimation formula in the M-step can be easily derived. How-
ever, the calculation of the posterior distribution P (�,� |�,Λ) in
the E-step is computationally intractable due to the combination of
hidden variables. To derive a feasible problem, we applied the vari-
ational EM algorithm [6] to the training algorithm of HMEMs.

The variational methods approximate the posterior distribution
over the hidden variables by a tractable distribution. Any distribution
Q(�,�) over the hidden variables de nes a lower bound on the log-
likelihood:

lnP (� |Λ) = ln
�
�

�
Q(�,�)

P (�,�,� |Λ)

Q(�,�)
d�

≥
�
�

�
Q(�,�) ln

P (�,�,� |Λ)

Q(�,�)
d�

= F(Q,Λ) (16)

where the Jensen’s inequality has been applied. The difference be-
tween lnP (� |Λ) and F is given by the Kullback-Leibler diver-
gence betweenQ(�,�) and the posterior distributionP (�,� |�,Λ).
Therefore maximizing the lower bound F with respect to Q(�,�)
is equivalent to minimizing the KL divergence. In order to yield

a tractable algorithm, it is necessary to consider a more restricted
structure of Q(�,�) distributions. Given the structure, the parame-
ters of Q(�,�) are varied so as to obtain the tightest possible bound,
which maximizes F .

The variational EM algorithm iteratively maximizes F with re-
spect to the Q and Λ holding the other parameters xed:

(E-step) : Q(k+1) = argmax
Q∈C

F(Q,Λ(k))

(M-step) : Λ(k+1) = argmax
Λ
F(Q(k+1),Λ)

where C is the set of constrained distributions. In the M-step, the
re-estimation formula in the standard EM algorithm can be used
by calculating the expectations with respect to Q(�,�) instead of
the true posterior distribution P (�,� |�,Λ). In this procedure, the
lower bound F is guaranteed to increase instead of the value of the
Q-function.

The complexity and the approximation property of the varia-
tional EM algorithm are dependent on a constraint to the posterior
distributionQ(�,�). Here we consider a constrained family of vari-
ational distributions for HMEMs by assuming that Q(�,�) factor-
izes over � and �(m), so that

Q(�,�) = Q(�)

M�
m=1

Q(�(m)) (17)

where
�
Q(a)d� = 1 and

�
�(m) Q(�(m)) = 1, m = 1, . . . ,M .

The optimal distributions of the subsets are obtained by maximizing
F independently while keeping the other distributions xed:

Q(�) ∝ P (� |Λ)

× exp

��
�

�
m

Q(�(m)) lnP (� |�,�,Λ)

�
(18)

Q(�(m)) ∝ P (�(m) |Λ)

× exp

� �
�/�(m)

�
Q(�)

�
n�=m

Q(�(n)) lnP (� |�,�,Λ)d�

�

(19)

The E-step consists of the updates of Q(�) and Q(�(m)) which
interact through the expectations. By inspection, the distribution
Q(�(m)) has the same structure as the posterior of standard HMMs;
the forward-backward algorithm can be used to compute a new set
of expectations. The expectations of Q(�) can also be computed by
the similar equations of the EM algorithm for PPCA/FA.

6. EXPERIMENTS

In order to demonstrate the modeling ability of HMEMs, face recog-
nition experiments on the XM2VTS database [7] were conducted.
We prepared eight images of 100 subjects; seven images were used
for training and one image for testing. Face images of grayscale
64× 64 pixels were extracted from the original images. In this pro-
cess, two sets of data were prepared:

• “dataset1”: the size- and location-normalized data (the origi-
nal size and location in the database are used).

• “dataset2”: the data with size and location variations. The
sizes and locations were randomly generated by Gaussian dis-
tributions almost within the location shift of 40 × 20 pixels
from the center point and the range of size from 500× 500 to
600 × 600 with xed aspect.
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Fig. 2. Visualized mean vectors and eigenfaces on “dataset2.”

To compare the recognition performances, the following mod-
els were constructed: the conventional PPCA and FA (“PPCA” and
“FA”), the SL-HMM with single Gaussian distributions (“SL-HMM”),
and the proposed HMEMs with the noise variances of PPCA and FA
(“SL-PPCA” and “SL-FA”). The intensity values were used as a fea-
ture vector and modeled by SL-HMMs and HMEMs with 32 × 32
states. “PPCA” and “FA” were trained as “SL-PPCA” and “SL-FA”
with 64 × 64 states, respectively. The number of factors was var-
ied from one to six for PPCA/FA and HMEMs. The initial state
transition was constructed by a linear segmentation and the loading
matrices were initialized by Gaussian noise with zero mean and unit
variance. The transition probabilities for state sequences were as-
sumed to be a left-to-right (top-to-bottom) no skip topology.

Figure 2 shows the visualized mean vectors and eigenfaces ob-
tained by “PPCA” and “SL-PPCA” using “dataset2.” As seen in the
gure, the mean vector of “PPCA” is blurred and the eigenfaces in-

clude variations in size and location. Although the spacial resolu-
tion of “SL-PPCA” are lower than “PPCA,” the parts of face can be
clearly identi ed in the mean vector of “SL-PPCA.” It is also be con-
sidered that “SL-PPCA” eliminates the size and location variations
from the eigenfaces by the state transitions of SL-HMMs.

Figure 3 and 4 show the recognition rates of “dataset1” and
“dataset2,” respectively. From the results, it can be seen that “SL-
PPCA” and “SL-FA” achieved higher performance than “SL-HMM”
in both datasets. This means that the eigenfaces of “SL-PPCA” and
“SL-FA” appropriately modeled the correlation among the observa-
tions and the ef cient features for face image modeling were ex-
tracted automatically. Although the recognition rate of “SL-FA” was
decreased as increasing the number of factors, this is because the in-
accurate estimation of noise variances due to insuf cient amount of
training data. In “dataset2,” it is con rmed that the performances of
“PPCA” and “FA” were signi cantly degraded by the size and loca-
tion variations. However, the models including the structure of SL-
HMMs (“SL-HMM,” “SL-PPCA” and “SL-FA”) could reduce the
in uence of the variations due to the ability to normalize the size
and location of images.

7. CONCLUSION

We have proposed hidden Markov eigenface models which are de-
ned as an integration of PPCA/FA and SL-HMMs, and derived a

feasible training algorithm based on the variational EM algorithm.
The proposed model has good properties of the both PPCA/FA and
SL-HMMs: a linear feature extraction and invariances to size and
location. In face recognition experiments on the XM2VTS database,
the proposed model achieved better results than the conventional
PPCA/FA and SL-HMMs. Investigation of optimal parameter shar-
ing structures and an improvement of the training algorithm using
the deterministic annealing EM algorithm will be future works.
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