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ABSTRACT
A hidden Markov mixture model is developed using a Dirich-
let process (DP) prior, to represent the statistics of sequen-
tial data for which a single hidden Markov model (HMM)
may not be sufficient. The DP prior has an intrinsic clus-
tering property that encourages parameter sharing, naturally
revealing the proper number of mixture components. The
evaluation of posterior distributions for all model parameters
is achieved via a variational Bayes formulation. We focus
on exploring music similarities as an important application,
highlighting the effectiveness of the HMM mixture model.
Experimental results are presented from classical music clips.

Index Terms— Dirichlet Process, HMM mixture, Music,
Variational Bayes.

1. INTRODUCTION

Music recognition, including music classification, retrieval,
browsing, and recommendation systems, has been of signif-
icant recent interest. Correspondingly, ideas from statisti-
cal machine learning have attracted growing interest in the
music-analysis community. For example, Gaussian mixture
models have been used to represent the distribution of the
MFCCs over all frames of an individual song [1][4]. How-
ever, no dynamic behavior of music is taken into account in
these works. Since “the brain dynamically links a multitude
of short events which cannot always be separated” [2], tem-
poral cues are critical and contain information that should not
be ignored. Therefore, music is treated as time-series data
and hidden Markov models (HMMs), which can accurately
represent the statistics of sequential data [8], have been intro-
duced to model the overall music in [2][9] and more recently
for music genre classification [10][12].

Building a single HMM for a song performs well when the
music’s “movement pattern” is relatively simple and thus the
structure is of modest complexity (e.g., the number of states
is few). However, most real music is a complicated signal,
which may have more than one “movement pattern” across
the entire piece. Therefore an HMM mixture model is pro-
posed in this paper to describe multiple “movement patterns”
in music, with each pattern characterized by a single mix-
ture component (an HMM). The work reported here develops
an HMM mixture model in a Bayesian setting using a non-
parametric Dirichlet process (DP) as a common prior distri-
bution on the parameters of the individual HMMs. It has been

proven that DP is rich enough to model parameters of individ-
ual components with arbitrarily high complexity, and flexible
enough to fit them well without any assumptions about the
functional form of the prior distribution [6][13]. Importantly,
the number of mixture components need not be set a priori
in the DP HMM mixture model. A variational Bayes [5] ap-
proach is considered to perform DP-based mixture modeling
for efficient computation. In this paper we focus on HMM
mixture models based on discrete observations; our method is
applicable to any sequential discrete data set containing mul-
tiple underlying patterns.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an introduction to the Dirichlet process and its
application to HMM mixture models. A variational Bayes in-
ference method is developed in Section 3. Section 4 describes
the music application as well as experimental results. Section
5 concludes the work.

2. DP-BASED HIDDEN MARKOV MIXTURE MODEL

2.1. Hidden Markov Mixture Model

The hidden Markov mixture model with K∗ mixture compo-
nents may be written as

p(x|a1, · · · , aK∗ ,Θ1, · · · ,ΘK∗) =
K∗∑
k=1

akp(x|Θk), (1)

where x = {xt}t=1,T is a sequence of observations, p(x|Θk)
represents the kth HMM component with associated param-
eters Θk, and ak represents the mixing weight for the kth

HMM, with
∑K∗

k=1 ak = 1.
We assume a set X = {xn}n=1,N of N sequences of

data. Each data sequence xn is assumed to be drawn from
an associated HMM with parameters Θn = {An,Bn,πn},
i.e., xn ∼ H(Θn), where H(Θ) represents the HMM. The
set of associated parameters {Θn}n=1,N are drawn i.i.d from

a shared prior G, i.e., Θn|G i.i.d∼ G. The distribution G is
itself drawn from a distribution, in particular a Dirichlet pro-
cess. The prior G encourages the clustering of the parameters
{Θn}n=1,N and each such cluster corresponds to an HMM
mixture component in (1). The algorithm automatically de-
termines an appropriate number of mixture components, bal-
ancing the DP-generated desire to cluster with the likelihood’s
desire to choose parameters that match the data X well. This
balance between the likelihood and the DP prior is manifested
in the posterior density function for parameters {Θn}n=1,N .
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2.2. Dirichlet Process
The Dirichlet process, denoted as DP (α,G0), is a random
measure on measures and is parameterized by a positive scal-
ing parameter α, often termed the “innovation parameter”,
and a base distribution G0. Assume we have N random vari-
ables {Θn}n=1,N distributed according to G, and G itself is
a random measure drawn from a Dirichlet process,

Θn|G ∼ G, n = 1, · · · , N,

G ∼ DP (α,G0),

where G0 is the expectation of G, E[G] = G0. Define Θ−n =
{Θ1, · · · ,Θn−1,Θn+1, · · · ,ΘN} and let {Θ∗k}k=1,K∗ be the
distinct values taken by {Θn}n=1,N and let n−n

k be the num-
ber of values in Θ−n that equal Θ∗k. Integrating out G, the
conditional distribution of Θn given Θ−n follows a Pólya urn
scheme and has the following form [13]

Θn|Θ−n, α,G0 ∼ 1
α + N − 1

(αG0 +
K∗∑
k=1

n−n
k δΘ∗

k
). (2)

where δΘi
denotes the distribution concentrated at point Θi.

Equation (2) shows that when considering Θn given all
other observations Θ−n, this new sample is either drawn from
base distribution G0 with probability α

α+N−1 , or is selected
from the existing draws Θ∗k according to a multinomial allo-
cation, with probabilities proportional to existing groups sizes
n−n

k . Sethuraman [11] provides an explicit characterization
of G in terms of a stick-breaking construction,

G =
∞∑

k=1

pkδΘ∗
k
, (3)

with
pk = vk

k−1∏
i=1

(1− vi), (4)

where vk|α ∼ Beta(1, α) and Θ∗k|G0 ∼ G0. This repre-
sentation shows the support of G consists of an infinite set of
atoms located at Θ∗k, drawn independently from G0. The mix-
ing weights pk for atom Θ∗k are given by successively break-
ing a unit length “stick” into an infinite number of pieces [11],
with 0 ≤ pk ≤ 1 and

∑∞
k=1 pk = 1.

2.3. HMM mixture models with DP prior
Given the observed data X = {xn}n=1,N , each xn is as-
sumed to be drawn from its own HMMH(Θn) parameterized
by Θn with the underlying state sequence sn. The common
prior G on all Θn is given as (3). Since G is discrete, dif-
ferent Θn may share the same value, Θ∗k, and take the value
of Θ∗k with probability pk. Introducing an indicator variable
c = {cn}n=1,N and letting cn = k indicate that Θn takes the
value of Θ∗k, the hidden Markov mixture model with DP prior
can be expressed as

xn|cn, {Θ∗k}∞k=1 ∼ H(Θ∗cn
),

cn|p ∼ Mult(p),
vk|α ∼ Beta(1, α),

Θ∗k|G0 ∼ G0, (5)

where p = {pk}k=1,∞ is given by (4) and Mult(p) is the
multinomial distribution with parameter p.

Assuming A,B and π are independent of each other, the
base distribution G0 is represented as G0 = p(A)p(B)p(π).
For computational convenience (use of appropriate conjugate
priors), we have the following prior distributions

P (A|uA) =
I∏

i=1

Dir({ai1, · · · , aiI};uA) (6)

p(B|uB) =
I∏

i=1

Dir({bi1, · · · , biM};uB) (7)

p(π|uπ) = Dir({π1, · · · , πI};uπ), (8)

where uA = {uA
i }i=1,I , uB = {uB

m}m=1,M , and uπ =
{uπ

i }i=1,I are parameters of the Dirichlet distribution. To
learn α from the data, we place a prior distribution on it,

p(α) = Ga(α; γ01, γ02), (9)

where Ga(α; γ01, γ02) is the Gamma distribution with selected
parameters γ01 and γ02.

3. VARIATIONAL INFERENCE

Considering computational complexity in the infinite stick-
breaking model, in practice we select an appropriate trunca-
tion level K (i.e., finite sticks) that leads to a model virtu-
ally indistinguishable from the infinite DP model [5]. Since
{Θn}n=1,N may only take a subset of values from {Θ∗k}k=1,K ,
the utilized number of mixture components K∗ may be less
than K (and the clustering properties of DP almost always
yield less than K mixture components, unless α is very large)
[7]. From Bayes’ rule, we have

p(Φ|X,Ψ) =
p(X|Φ)p(Φ|Ψ)∫
p(X|Φ)p(Φ|Ψ)dΦ

, (10)

where Φ = {A∗,B∗,π∗,v, α,S, c} are hidden variables of
interest and Ψ = {uA,uB ,uπ, γ01, γ02} are fixed parame-
ters. The integration in the denominator of (10), the marginal
likelihood, is generally intractable analytically. Variational
methods are thus introduced to seek a distribution q(Φ) to ap-
proximate the true posterior distribution p(Φ|X,Ψ). Consider
the log marginal likelihood

log p(X|Ψ) = L(q(Φ)) +DKL(q(Φ)||p(Φ|X,Ψ)), (11)

where

L(q(Φ)) =
∫

q(Φ) log
p(X|Φ)p(Φ|Ψ)

q(Φ)
dΦ ≤ log p(X|Ψ),

(12)
and DKL(q||p) is the KL divergence between q and p. The
approximation of p(Φ|X,Ψ) using q(Φ) can be achieved by
minimizing DKL(q(Φ)||p(Φ|X,Ψ)), which is equivalent to
maximization of L(q(Φ)).

For the HMM mixture model proposed we assume
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q(Φ) = q(α)q(v)

{
K∏

k=1

[q(A∗k)q(B∗k)q(π∗k)]

}
·

·
{

N∏
n=1

K∏
cn=1

[q(cn)q(sncn
)]

}
, (13)

where q(A∗k), q(B∗k), q(π∗k) have the same form as in (6)-(8)
respectively but different parameters, q(v) =

∏K−1
k=1 q(vk)

with q(vk) = Beta(vk;β1k, β2k), and q(α) = Ga(α; γ1, γ2).
Once we learn the parameters of these variational distribu-
tions from the data, we obtain the approximation of p(Φ|X,Ψ)
by q(Φ). The joint distribution of Φ and observations X are
given as

p(X,Φ|Ψ) = p(α)p(v|α)
K∏

k=1

[p(A∗k)p(B∗k)p(π∗k)] ·

·
N∏

n=1

K∏
cn=1

[p(cn|v)p(xn, sncn
|A∗,B∗,π∗, cn)] , (14)

where priors p(A∗k), p(B∗k), p(π∗k), and p(α) are given in (6)-
(9) respectively, and p(v|α) =

∏K−1
k=1 p(vk|α) with p(vk|α) =

Beta(vk; 1, α).
The term L(q) can be obtained by substituting (13) and

(14) into (12). The optimization of the lower bound L(q) is
realized by taking functional derivatives with respect to each
of the q(·) distributions [3]. The update equations for the vari-
ational posteriors can be found in [7] and are omitted here for
brevity.

The local maximum of the lower bound L(q) is achieved
by iteratively updating the parameters of q(·) according to
the update equations. We terminate the algorithm when the
change in L(q) is negligibly small. Assuming that the states
and the model parameters are independent and the model can
be evaluated at the mean (or mode) of the variational poste-
rior as suggested in [3], the prediction for a new observation
sequence y can be easily obtained.

4. MUSIC EXPERIMENTS

The music clips are sampled at 22 kHz and we divide each
clip into 25 ms non-overlapping frames. A 10-dimensional
MFCC feature vector is extracted for each frame and then
quantized into discrete symbols with LBG algorithm. For our
experiments, we use a sequence of 1 second. This transforms
the music into a collection of sequences, with each sequence
assumed to originate from an HMM. All data and [7] can be
found at http:// www.ee.duke.edu/∼jwp4/HMMMix.

4.1. Music Similarity Measure
Music similarity is computed based on the distance between
the respective HMM mixture models. LetMg be the learned
HMM mixture model for music g, and Mh for music h. We
draw a sample set Sg from Mg and Sh from Mh. The dis-
tance between any two HMM mixture models is defined as

D(Mg,Mh) =
1
2

[L(Mg|Mh) + L(Mh|Mg)] , (15)

where L(Ma|Mb) = log p(Sb|Ma) − log p(Sb|Mb) is a
measure of how well model Ma matches observations gen-
erated by model Mb, relative to how well Mb matches the
observations generated by itself. The similarity Sim(g, h) of
the music g and h is defined by a kernel function as

Sim(g, h) = exp(−|D(Mg,Mh)|2
σ2

), (16)

where σ is a fixed parameter; we notice that σ will not change
the order of similarities.

4.2. Results
We explore music similarity within the classical genre with
two experiments. For comparison, we also model each piece
of music as a DP Gaussian mixture model (DP GMM) [5][13],
where the 10-dimensional MFCC feature vector of a frame
corresponds to one data point in the feature space.

For our first experiment, we choose four 3-minute violin
concerto clips from two different composers. Clips 1 and 2
are from Bach and are considered similar, clips 3 and clip
4 are from Stravinsky are also considered similar. The two
pairs are considered different from each other. All four music
clips are played using the same instruments, but their styles
vary, indicating a high overlap in feature space, but signifi-
cantly different movement. We built an HMM mixture model
for each with truncation level, set to K = 50 and number of
states to I = 8. The truncation level of the DP GMM was set
to 50 as well. Fig. 1 shows the computed similarity between
each clip for both HMM mixture and GMM modeling using
a Hinton diagram, in which the size of a block is proportional
to the value of the corresponding matrix elements. HMM
mixture modeling produces results that fit with our intuition.
However, our GMM results do not catch the connection be-
tween clips 3 and 4, and, proportionally, do not contrast clips
1 and 2 from 3 and 4 as well. The improved similarity recog-
nition can be attributed to the temporal consideration given by

1 2 3 4
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1: Bach-Violin Concerto BWV 1041 Mvt I

2: Bach-Violin Concerto BWV 1042 Mvt I

3: Stravinsky- Violin Concerto Mvt I

4: Stravinsky- Violin Concerto Mvt IV

(a) (b)

Fig. 1. Hinton diagram for the similarity matrix for 4 violin
clips. (a) by DP HMM mixture models; (b) by DP GMMs.
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Fig. 2. Clip 4 (a) Mixing weights. (b) Memberships.

the HMM mixture model while the feature spaces are highly
overlapped.

Fig. 2(a) shows the mixing weights of the DP HMM mix-
ture models for clip 4 as an example. Although the number
of significant weights is initially high, the algorithm auto-
matically reduces this number by suppressing the superflu-
ous components to that necessary to model each clip: the
expected mixing weights for these unused HMMs are near
zero with high confidence, indicated by the small variance
of the mixing weights. The posterior membership (which
is arg maxk q(cn = k)) for clip 4 is displayed in Fig. 2(b),
where those parts having similar styles should be drawn from
the same HMM. The fact that the first 20 seconds of this clip
are repeated during the last 20 can be seen in their similar
membership patterns.

For our second experiment, we compute the similarities
between ten 3-minute clips, which were chosen deliberately
with the following intended clustering: 1) clip 1 is unique in
style and instrumentation; 2) clips 2 and 3, 4 and 5, 6 and 7,
and 9 and 10 are intended to be paired together 3) clip 8 is
also unique, but is the same format (instrumentation) as clips
6 and 7. The Hinton diagrams of the corresponding similarity
matrices are shown in Fig. 3. Again, our intuition is consistent
in this experiment with HMM mixture modeling, but less ac-
curate with GMM modeling. Though the GMM model does
not contradict our intuition, the similarities are not as stark as
in the HMM mixture, especially in the case of clip 1, which
was selected to be unique.

5. CONCLUSION
We have developed a discrete HMM mixture model in a Baye-
sian setting using DP priors, which has the advantage of avoid-
ing the need to select the number of mixture components,
through the encouragement of parameter sharing. A VB ap-
proach is employed for inference. The performance of HMM
mixture modeling was demonstrated on music data sets and
compared to the GMM, computing similarities between mu-
sic as a measure of performance. In our experiments HMM
mixture modeling outperforms the GMM.

6. REFERENCES

[1] J.-J. Aucouturier and F. Pachet, “Improving timbre similarity:

How high’s the sky?” Journal of Negative Results in Speech

1: Beethoven- Consecration of the House 2: Chopin- Etudes Op 10 No 01

3: Rachmaninov- Preludes Op 23 No 02 4: Scarlatti- Sonata K. 135

5: Scarlatti-Sonata K. 380 6: Debussy- String Quartet op 10 Mvt II

7: Ravel- String Quartet in F Mvt II 8: Shostakovich- String Quartet No 08 Mvt II

9: Bach-Violin Concerto BWV 1041 Mvt I 10:Bach-Violin Concerto BWV 1042 Mvt I

(a) (b)
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 3. Hinton diagram for the similarity matrix for 10 music
clips. (a) by DP HMM mixture models; (b) by DP GMMs.

and Audio Sciences, vol. 1, no. 1, 2004.

[2] J.-J. Aucouturier and M. Sandler, “Segmentation of musical

signals using hidden markov models,” in Proceedings of the
110th Convention of the Audio Engineering Society, May 2001.

[3] M. J. Beal, “Variational algorithms for approximate bayesian

inference,” Ph.D. dissertation, Gatsby Computational Neuro-

science Unit, University College London, 2003.

[4] A. Berenzweig, B. Logan, D. P. Ellis, and B. Whitman, “A

large-scale evaluation of acoustic and subjective music simi-

larity measures,” Computer Music Journal, vol. 28, no. 2, pp.

63–76, 2004.

[5] D. Blei and M. Jordan, “Variational methods for the dirichlet

process,” ICML, 2004.

[6] T. S. Ferguson, “A bayesian analysis of some nonparametric

problems,” Annals of Statistics, vol. 1, pp. 209–230, 1973.

[7] Y. Qi, J. W. Paisley, and L. Carin, “Hidden markov mixture

models with dirichlet process priors,” ECE Department, Duke

University,” Technical report, 2006.

[8] L. R. Rabiner, “A tutorial on hidden markov models and se-

lected applications in speech recognition,” in Proceedings of
the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[9] C. Raphael, “Automatic segmentation of acoustic musical sig-

nals using hidden markov models,” IEEE Trans. on PAMI,
vol. 21, no. 4, pp. 360–370, 1999.

[10] N. Scaringella and G. Zoia, “On the modeling of time informa-

tion for automatic genre recognition systems in audio signals,”

in Proceedings of the 6th ISMIR, pp. 666–671, 2005.

[11] J. Sethuraman, “A constructive definition of the dirichlet prior,”

Statistica Sinica, vol. 2, pp. 639–650, 1994.

[12] X. Shao, C. Xu, and M. Kankanhalli, “Unsupervised classifi-

cation of musical genre using hidden markov model,” ICME,

pp. 2023–2026, 2004.

[13] M. West, P. Muller, and M. Escobar, “Hierarchical priors and

mixture models with applications in regression and density es-

timation,” in Aspects of Uncertainty, P. R. Freeman and A. F.

Smith, Eds. John Wiley, 1994, pp. 363–386.

II ­ 468


