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ABSTRACT
A variety of Bayesian methods have recently been introduced

for nding sparse representations from overcomplete dictionaries of
candidate features. These methods often capitalize on latent struc-
ture inherent in sparse distributions to perform standard MAP esti-
mation, variational Bayes, approximation using convex duality, or
evidence maximization. Despite their reliance on sparsity-inducing
priors however, these approaches may or may not actually lead to
sparse representations in practice, and so it is a challenging task to
determine which algorithm and sparse prior is appropriate. Rather
than justifying prior selections and modelling assumptions based on
the credibility of the full Bayesian model as is commonly done, this
paper bases evaluations on the actual cost functions that emerge from
each method. Two minimal conditions are postulated that ideally
any sparse learning objective should satisfy. Out of all possible cost
functions that can be obtained from the methods described above
using (virtually) any sparse prior, a unique function is derived that
satis es these conditions. Both sparse Bayesian learning (SBL) and
basis pursuit (BP) are special cases. Later, all methods are shown
to be performing MAP estimation using potentially non-factorable
implicit priors, which suggests new sparse learning cost functions.

Index Terms— sparse representations, sparse priors, latent vari-
able models, underdetermined inverse problems, Bayesian learning

1. INTRODUCTION

Here we will be concerned with the generative model

y = Φx + ε, (1)

where Φ ∈ R
N×M is a dictionary of unit �2-norm basis vectors or

features, x is a vector of unknown weights, y is the observation vec-
tor, and ε is uncorrelated noise distributed as N (0, λI). In many
practical situations, this dictionary will be overcomplete, meaning
M > N and rank(Φ) = N . When large numbers of features are
present relative to the signal dimension, the estimation problem is
fundamentally ill-posed. A Bayesian framework is intuitively ap-
pealing for formulating these types of problems because prior as-
sumptions must be incorporated, whether explicitly or implicitly, to
regularize the solution space.

Recently, there has been a growing interest in models that em-
ploy sparse priors to encourage solutions with mostly zero-valued
coef cients. For purposes of optimization, approximation, and in-
ference, these models can be conveniently framed in terms of a col-
lection of non-negative latent variables γ � [γ1, . . . , γM ]T . The
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latent variables dictate the structure of the sparse prior in one of two
ways. First, in the integral-type representation, the prior is formed
as a scale mixture of Gaussians via

p(x) =

MY
i=1

p(xi), p(xi) =

Z
N (0, γi)p(γi)dγi. (2)

In contrast, the convex-type representation takes the form1

p(xi) = sup
γi≥0

N (0, γi)p(γi), (3)

whose form is rooted in convex analysis and duality theory. As
shown in [10], virtually all sparse priors of interest can be decom-
posed using both (2) and (3), including the popular Laplacian, Jef-
freys, Student’s t, and generalized Gaussian priors.2 The key re-
quirement is that p(xi) is strongly supergaussian, which requires
that

p(xi) ∝ exp[−g(x2
i )], (4)

with g(·) a concave and non-decreasing function.
In the context of regression and model selection, the fully Bayes-

ian treatment would involve integration (or maximization for the
convex representation) over both the latent variables and the un-
known weights. With sparse priors, however, this is intractable.
Moreover, in applications where sparsity is important, often a sparse
point estimate x̂ is all that is required, rather than merely a good
estimate of p(y) or the conditional distribution of new data-points
y∗, i.e., p(y∗|y). As such, nearly all models with sparse priors are
handled in one of two ways, both of which can be viewed as approx-
imations to the full model.

First, the latent structure afforded by (2) and (3) offers a very
convenient means of obtaining (local) MAP estimates of x using
generalized EM procedures that iteratively solve

x̂ = argmax
x

p(y|x)p(x). (5)

Henceforth referred to as Type I methods, common examples in-
clude minimum �p-quasi-norm approaches [6, 12], Jeffreys prior-
based methods sometimes called FOCUSS [2, 3, 5], and algorithms
for computing the basis pursuit (BP) or Lasso solution [3, 7, 12].

Secondly, instead of integrating out (or maximizing out) the hy-
perparameters, Type II methods integrate out the unknown x and
then solve

γ̂ = argmax
γ

p(γ|y) = argmax
γ

Z
p(y|x)N (0, γ)p(γ)dx. (6)

1Here we use a slight abuse of notation, in that p(γi) need not be a proper
probability distribution.

2The convex-type representation is slightly more general than (2).
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Once γ̂ is obtained, a point estimate for x naturally emerges as

x̂ = E [x|y; γ̂] = Γ̂ΦT
“
λI +ΦΓ̂ΦT

”−1

y, (7)

where Γ � diag(γ). Relevant examples include sparse Bayesian
learning (SBL) [15], automatic relevance determination (ARD) [9],
evidence maximization [13], and methods for learning overcomplete
dictionaries [4]. Perhaps surprisingly, even the popular variational
mean- eld approximations, which optimize a factorial posterior dis-
tribution such that p(x, γ|y) ≈ q(x|y)q(γ|y), are equivalent to the
Type II methods in the context of strongly supergaussian priors [10].
A speci c example of this can be found in [1].

In applying all of these methods in practice, the performance
achieving sparse solutions is varied. Results can be highly depen-
dent on the (subjective) parameterization used in forming the latent
variables. This occurs because the decomposition of p(x) is gen-
erally not unique. In some cases, these methods lead to identical
results, in others, they may perform poorly or even lead to prov-
ably non-sparse representations, despite their foundation on a sparse
prior-based generative model. In still other cases, they may be very
successful. As such, sorting out the meaningful differences between
these methods remains an important issue.

In this paper, we will begin by examining the cost functions that
emerge from all possible Type I and Type II methods, demonstrating
that the former is actually a limiting case of the latter, with a common
underlying set of objective functions uniting both methods. How-
ever, it still remains unclear how to reliably select from this class of
algorithms when sparsity is the foremost concern. To this effect, we
postulate two minimal conditions that ideally any sparse approxima-
tion cost function should satisfy. We then select, out of all the possi-
ble Type I and II methods discussed above, the unique function that
satis es these two conditions. Interestingly, both BP and SBL are
special cases. In general, we would argue that these results signi -
cantly compress the space of ‘useful’ sparse algorithms and provides
a more rigorous justi cation for using a particular method consistent
with observed empirical results [16]. We conclude by showing that
all Type II methods can be viewed as performing MAP estimation
using non-separable (i.e., non-factorable) implicit priors. This eluci-
dates connections between methods and suggests new sparse learn-
ing cost functions.

2. A UNIFIED COST FUNCTION

Given the signi cant discrepancies between the modelling assump-
tions of various latent variable sparse approximation methods, it
would seem that the respective cost functions should be very differ-
ent. However, this section demonstrates that they all can be related
to a single underlying objective function. We start with two interme-
diate results before presenting the main idea.

Lemma 1. Given a sparse prior expressible using (2) or (3), the
resulting posterior mode over x (as is sought by Type I methods)
can be obtained by minimizing the cost function

L(I)(γ;λ, f) � yTΣ−1
y y +

MX
i=1

f(γi) (8)

over the latent variables γ , where Σy � λI + ΦΓΦT and f(·) is a
suitably chosen function on [0,∞).

Proof : From basic linear algebra, we have

yTΣ−1
y y = min

x

1

λ
‖y − Φx‖22 + xTΓ−1x. (9)

The minimizingx is given by (7). If we choose f(γi) = −g∗
`
γ−1

i

´
,

where g∗(·) denotes the concave conjugate of g(·), then the opti-
mization problem becomes

min
γ
L(I)(γ;λ, f) =

min
γ

min
x

1

λ
‖y − Φx‖22 + xTΓ−1x +

X
i

−g∗(γ−1
i ).(10)

When we switch the order of minimization (allowable) and optimize
over γ rst, we get

min
γ

xTΓ−1x +
X

i

−g∗(γ−1
i ) =

X
i

g(x2
i ), (11)

which follows from the representation (3) and its assumption that
g(·) is concave in x2

i [10]. Since the posterior mode is given by the
minimum of

L(I)(x;λ, f) � − log p(y|x)p(x) ≡ ‖y − Φx‖22 + λ
X

i

g(x2
i ),

(12)
this completes the proof. Additionally, local minima are preserved
as well, meaning there is a one-to-one correspondence between lo-
cal minima of (8) and local minima of (12). Note that this analysis is
valid even for priors constructed via the integral representation (2),
since such priors are a subset of those built upon (3). �

Lemma 2. All of the Type II methods can be obtained by minimiz-
ing the cost function

L(II)(γ;λ, f) � yTΣ−1
y y + log |Σy|+

MX
i=1

f(γi). (13)

Proof : This result can be obtained by computing the integral in (6)
and applying a − log(·) transformation. The value of f(·) will de-
pend on the prior representation that is assumed. �

Theorem 1. Both the Type I and Type II cost functions can be re-
duced to (13) with the appropriate selection of f(·) and λ.

Proof : It only remains to show that (8) is a special (limiting) case of
(13). This is very straightforward because we can always reparame-
terize things such that the log |Σy| term vanishes. Let

f̄ (·) � αf [α(·)] , λ̄ � α−1λ, (14)

where α > 0 is a constant. Under these de nitions, we have

L(II)(γ; λ̄, f̄)

= yT
h
λ̄I +ΦΓΦT

i−1

y + log
˛̨̨
λ̄I +ΦΓΦT

˛̨̨
+
X

i

f̄ (γi)

≡ yT
h
λI + αΦΓΦT

i−1

y +
1

α
log
˛̨̨
λI + αΦΓΦT

˛̨̨
+
X

i

f (αγi)

and so as α becomes large

L(II)(γ; λ̄, f̄)→ yT
h
λI +Φ(αΓ)ΦT

i−1

y +
X

i

f (αγi) .

(15)
This is equivalent to (8) with the exception of the scaling factor of α
on γ . However, this factor is irrelevant in that the weight estimate x̂
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so obtained will be identical [16]. �

In summary, by choosing the appropriate sparse prior, and there-
fore the function f(·), any Type I cost function can be reduced to a
limiting case of Type II. The same can be shown for the associated
update rules. As will be discussed in Section 5, the real distinction
between the two is that Type I methods are restricted to separable
(i.e., factorial) effective priors while Type II approaches are not. Ad-
ditionally, we will drop explicit use of the subscripts (I) and (II),
using L(γ;λ, f) to denote the cost function for all methods.

3. MINIMAL PERFORMANCE CONDITIONS

In the past, different methods have been justi ed based on the plau-
sibility of the full model and the full prior p(x), or in terms of how
well a particular approximation resembles the full model. But this
can be problematic since, as already mentioned, sparse priors need
not lead to sparsity-promoting cost functions when using Type I or
Type II methods, even when well-motivated priors are in service. As
such, we base our evaluation solely on two minimal performance
criteria that we would argue a cost function should ideally satisfy if
sparsity is the overall objective. While certainly there are different
notions of sparsity, here we are concerned with cost functions that
encourage sparsity in the �0-norm sense, meaning most weights go
to exactly zero, not merely small values. This notion of sparsity is
often crucial, because with large numbers of features, it is very de-
sirable for a variety of reasons that many may be pruned from the
model.

Condition 1. Every local minimum is achieved at a solution with at
most N nonzero elements.

In the noiseless case, this requirement is equivalent to stating that
every local minima is achieved at a basic feasible solution (BFS).
Many of the MAP algorithms satisfy this condition (e.g., using a
generalized Gaussian prior with p ≤ 1 or a Jeffreys prior [12]). This
ensures that an algorithm is guaranteed to prune at least M − N
unnecessary coef cients, a minimal sparsity condition.

Condition 2. If y = ωφi for some ω ∈ R and unique dictionary
columnφi, then there is a unique, minimizing solution characterized
by x̂ = ωei, where ei is the canonical unit vector.

This can be viewed as a minimal recoverability criteria: if a method
maintains troublesome local minima even when only a single, nonzero
element need be found, then serious dif culties may arise for more
challenging problems. In the context of source localization for neu-
roimaging, this is suf cient to ensure zero localization bias [14].

4. PERFORMANCE ANALYSIS

Rather than directly considering each possible sparse prior and its
attendant latent variable structure, we can instead analyze the gen-
eral cost function L(γ;λ, f) that encompasses all possibilities. This
leads to a much more straightforward means of assessing the differ-
ent Type I and Type II methods. Here we will begin with the as-
sumption that f(·) is an arbitrary differentiable function on [0,∞).
Note that there is some indeterminacy between the speci cation of
the prior and the cost function that results. In other words, a given
prior p(x) can be decomposed using multiple latent parameteriza-
tions, leading to different effective values of f(·).

We rst give some preliminary results before presenting the main
theorem. Also, the analysis assumes that each column of Φ has unit
�2 norm.

Lemma 3. To satisfy Condition 1, f(·) must be a nondecreasing
function on [0,∞).

This result is very straightforward to show.

Lemma 4. Let f(·) be convex and nonlinear in some (possibly
open) interval. Then L(γ;λ, f) violates Condition 1.

It is not dif cult to create examples that illustrate this result. In gen-
eral, if a large subset of hyperparameters maintain similar values in
the speci ed convex region, then certain dictionaries with redundant
means of achieving nearly the same covariance Σy will lead to lo-
cally minimizing solutions with more thanN nonzero elements [16].

Lemma 5. Let f(·) be concave and nonlinear on [0,∞). Then
L(γ;λ, f) violates Condition 2.

The proof has been deferred to [16]. Only the class of non-decreasing
af ne functions satisfy the above three lemma, which constitute nec-
essary conditions. For suf ciency we have the following result:

Lemma 6. L(γ;λ, f) satis es Conditions 1 and 2 if f(z) ∝ αz,
where α ≥ 0.

See [16] for the proof. Combining all of the above, we arrive at the
following conclusion:

Theorem 2. L(γ;λ, f) satis es Conditions 1 and 2 if and only if
f(z) ∝ αz, where α ≥ 0.

A couple of things are worth noting with respect to this result. First,
the implicit prior associated with f(z) ∝ αz depends on which rep-
resentation of the latent variables is assumed. For example, using
the integral representation from (2) to perform MAP estimation of
γ , we nd that p(x) is Laplacian, but using the convex representa-
tion (or when using the equivalent variational Bayes formulation),
p(x) becomes a kind of Jeffreys prior-like distribution with an in-
nite peak at zero. Both lead to the exact same algorithm and cost
function, but a very different interpretation of the prior. In contrast,
if a Laplacian prior is decomposed using (3) as in done in [4], a
provably non-sparse cost function results. This underscores the dif-
culty in choosing a model based on the plausibility of the starting
prior rather than performance criteria directly linked to the actual
cost function that ensues.

Secondly, both the SBL and BP cost functions can be viewed as
limiting cases of L(γ;λ, f) when using f(z) = αz. SBL is ob-
tained with α → 0, while BP results from the assumption α → ∞,
with λ → λ/α1/2. The general case is easily implemented using
EM updates, where the E-step involves computing the posterior mo-
ments

E
h
xxT |y;γ

i
= ΓΦTΣ−1

y yyTΣ−1
y ΦΓ+Γ−ΓΦTΣ−1

y ΦΓ, (16)

while the M-step reduces to

γi =
−1 + `1 + 4αE

ˆ
xxT |y;γ˜

ii

´1/2

2α
. (17)

Consistent with the above observations, when α → 0, these ex-
pressions reduce to the exact SBL updates (EM version), while the
assumptions α → ∞, with λ → λ/α1/2 produce an interior point
method for computing the BP solution. For all other α, the algorithm
is very effective in empirical tests [16], although the optimal value is
likely application dependent.
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5. DISCUSSION

Bayesian algorithms for promoting sparsity have been derived using
a variety of assumptions, from standard MAP estimation, to varia-
tional Bayes, to convex lower-bounding, to evidence maximization,
etc. These methods capitalize on latent structure inherent to sparse
distributions in one of two ways, leading to the distinction between
Type I and Type II methods, all of which can be optimized using a
general EM framework [10]. However, despite their reliance on a
sparsity-inducing prior, these approaches may or may not actually
lead to sparse representations in practice.

Rather than subjectively evaluating different methods based on
the plausibility of the particular prior or approximation strategy that
is used, in this paper we have chosen to take a step back and eval-
uate each model with respect to how well the underlying cost func-
tion encourages sparsity. To accomplish this, we have described a
general class of objective functions that encompasses all Type I and
II approaches using results from [10]. From this family, we then
demonstrated that only a single function satis es two broad criteria
directly tied to performance in nding sparse representations. Both
SBL and BP objectives are special cases of this function. Perhaps
not coincidentally then, SBL and BP were respectively the rst and
second best Bayesian approaches to solving extremely large sparse
inverse problems tied to neuroelectromagnetic source imaging using
400+ times overcomplete dictionaries [11].

A nal point is worth exploring regarding the difference between
Type I and Type II approaches. By convention, Type I methods, be-
ing labelled as MAP estimates for x, have been distinguished from
Type II methods, which can be viewed as MAP estimates for the hy-
perparameters γ . In speci c cases, arguments have been made for
the merits of one over the other based on intuition or heuristic argu-
ments [8, 15]. But we would argue that this distinction is somewhat
tenuous. In fact, all Type II methods can equivalently be viewed as
standard MAP estimation in x-space using the prior

p(x) ∝ exp

"
−1
2
min

γ

 
xTΓ−1x + log |Σy|+

X
i

f(γi)

!#
.

(18)
Although not generally available in closed form, this prior is nec-
essarily concave in x2 in the same sense as the priors (2) and (3)
[16]. Unlike the previous prior expressions however, (18) is non-
separable, meaning p(x) �= Q

i p(xi). This we believe is the key
distinction between Type I and Type II; both are nding MAP esti-
mates of x, but the former is restricted to factorial priors while the
latter is not (this is consistent with the notion that Type I is a special
case of Type II).

This distinction between factorial and non-factorial priors ap-
pears both in x-space and in hyperparameter γ-space and is readily
illustrated by comparing SBL and FOCUSS in the latter. Using a
determinant identity and results from Section 2, the SBL cost can be
expressed as

LSBL(γ;λ) = yTΣ−1
y y + log |Γ|+ log

˛̨̨
Γ−1 + λ−1ΦTΦ

˛̨̨
= LFOCUSS(γ;λ) + log

˛̨̨
Γ−1 + λ−1ΦTΦ

˛̨̨
.(19)

Thus, the two cost functions differ only with respect to the non-
separable log-determinant term. In fact, it is this term that allows
SBL to satisfy Condition 2 while FOCUSS does not. Again, this re-
inforces the notion that cost-function-based evaluations can be more
direct and meaningful than other critiques.

These issues raise a key question. If we do not limit ourselves to
separable regularization terms (i.e., priors), then what is the optimal
selection for p(x)? Perhaps there is a better choice that does not
neatly t into current frameworks that are linked to the Gaussian
distribution. This remains an interesting area for further research.
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