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ABSTRACT

Admixture models are “mixtures of mixtures” that decom-

pose an object into multiple latent components, with the com-

ponent proportions varying stochastically across objects. Re-

cent work in machine learning has successfully developed ad-

mixture models for text, and work in population genetics has

developed such models to analyze complex groups of individ-

uals having mixed ancestry. We introduce a family of graphi-

cal admixture models for decomposing a signal into multiple

components based on a wavelet representation of the signal.

Two models are developed, one using a fixed segmentation of

the signal, another using recursive dyadic partitioning. Varia-

tional algorithms are derived for inferring mixture proportions

and estimating parameters.

Index Terms— Graphical model, wavelets, variational

inference, recursive dyadic partitioning, unsupervised signal

segmentation and labeling.

1. INTRODUCTION

Many types of data can be interpreted as being naturally con-

structed from several different components. A single text arti-

cle, for example, may be composed on a few different themes

or topics; an organism within a large population may have a

genotype that reflects an ancestry from multiple subpopula-

tions. The underlying components are latent, but might be

revealed from either expert knowledge or a statistical analysis

of large amounts of data. Recent research in machine learning

has developed powerful new tools for automating such analy-

sis.

The latent Dirichlet allocation model [1] was proposed by

Blei et al. for decomposing text documents into latent “top-

ics,” which are the high level themes in a large document

collection. This basic technique is serving as a foundation

for new tools for automated document analysis [2, 3]; similar

models have been independently developed for population ge-

netics [4]. Such hierarchical probabilistic models have been
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generalized to other kinds of data as well, notably to natu-

ral images that have been presegmented into chunks [5, 6, 7].

These models provide a method for dimensionality reduction

for large collections of unstructured data, which can be useful

for information retrieval, collaborative filtering, classification,

and topic-directed browsing.

In the latent Dirichlet allocation model, the mixing pro-

portions are randomly drawn for each instance, while the mix-

ture components, or topics, are shared across documents. The

words of each document are assumed to be independently

drawn from the resulting mixture of multinomials. Thus, the

model is exchangeable; if the words in a document are jum-

bled up, the model’s predictions remain the same. For many

types of data however, order matters. In financial time se-

ries, natural images, or acoustic signals, the ordering of the

observations carries crucial information, which an exchange-

able model ignores. Scramble the words in a document, and a

human reader can still easily discern the main themes; scram-

ble the pixels in an image or the notes in a musical piece, and

the result will appear unintelligible.

In this paper we integrate latent topic models with graph-

ical models of signals based on wavelet representations, com-

bining the efficiency of multiscale methods with the flexibil-

ity of Markov random fields. Seminal work in this direction

includes [8, 9, 10]. In the work of Crouse et al. [10], for in-

stance, hidden Markov trees are used to model the wavelet

coefficients for signals drawn from different classes. How-

ever, the classes are assumed to be known in labeled training

data. While this approach can be used to develop segmenta-

tion procedures to label composite signals, it cannot be used

to automatically discover the underlying signal components.
Motivated by latent topic models of text that can discover the

semantic themes in a document collection, our goal is to de-

velop admixture models for signals that uncover the primary

building blocks from which those signals are composed.

2. LATENT TOPIC MODELS FOR SIGNALS

The latent Dirichlet allocation model [1] is a simple, but el-

egant and effective graphical model used to decompose text
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Fig. 1. Excerpt from the Chopin étude in C, encoded as note dif-

ferences, extracted from MIDI. Multiple “themes” or “textures” are

apparent. The modeling approach is to posit that different segments,

under dyadic partitioning, are generated from wavelet coefficient

models associated with a corresponding latent variable at each leaf.

The different models constitute the “themes” or “topics” learned

across a large corpus of signals.

corpora into semantic “topics.” The model is generative, and

synthesizes a document by first drawing a weighting over the

topics, then independently sampling a topic for each word

position, and finally sampling each word from the multino-

mial corresponding to its assigned topic. While the words are

conditionally independent given the mixing proportions, top-

ically related words are highly correlated.

In more detail, suppose thatX = {Xi}N
i=1 is a document,

thought of as a “bag of words,” with Xi ∈ V for some fixed

vocabulary. The LDA model generates X according to the

process

θ ∼ Dirichlet(α)
Zi | θ ∼ Mult(θ), for each i
Xi |Zi ∼ Mult(βZi

), for each i

The document likelihood is thus given by the computationally

intractable integral

p(X |α, β) =
∫
p(θ |α)

N∏
i=1

∑
a

θa p(Xi |βa) dθ

We will modify this model by assumingX is a signal rep-

resented in a wavelet basis, and that there is a latent labeled

dyadic segmentation of X , with each leaf generated from a

mixture model associated with the corresponding label. We

first describe our approach at an intuitive level, and specify it

in more detail in the following section.

To generate a one-dimensional signal of length 2n, we
first generate a tree over the signal using recursive dyadic par-

titioning; a prior over tree depth can be incorporated to favor

trees that are not too detailed. For each leaf � ∈ leaves(T ) in
this segmentation tree, a topic Z� is sampled from the topic

mixture vector θ. The portion of the signal spanned by node
� is generated by sampling the wavelet coefficients for this
portion of the signal, according to an appropriate model. A

simple, yet still effective choice is to sample the coefficients

from a mixture of Gaussians associated with topic Z�; more

sophisticated models based on hidden Markov trees [10] are

alternatives. Thus, the model takes the following generative

form:

T ∼ Tree(δ)
θ ∼ Dirichlet(α)

Z� | θ ∼ Mult(θ), for each leaf �

X� |Z� ∼ Mixture
(
μ(Z�), σ(Z�)

)
, for each leaf �

Here Tree(δ) denotes a prior model over dyadic partitions;
for example p(T ) ∝ exp(−δ|T |). The use of dyadic par-
titions and variational approximations enables dynamic pro-

gramming algorithms that efficiently sum over all labelings

and segmentations of the signal, as described below.

3. VARIATIONAL INFERENCE FOR TWOMODELS

Using the paradigm of seeding more complex models with

simpler models [11], we first train Model 1 using fixed seg-

mentations, and use it to initialize Model 2, which sums over

all dyadic partitions.

3.1. Model 1

Our simplest model begins with a single segmentation of each

signal into segments of fixed length (δ); the signal segments
correspond to words in an LDA model. Let X� denote sig-

nal segment � and let X̂�i denote the wavelet coefficients for

the segment (other orthogonal function representations can be

used as well, including overcomplete bases). A simple model

of the coefficients is independent sampling under a Gaussian

mixture:

p(X� | a) =
∏
i∈�

∑
k

λ
(a)
k p
(
X�i |μ(a)k , σ

(a)
k

)

The mixture models may vary with the level in the multiscale

wavelet decomposition, or they may be tied according to a

hidden Markov tree. The data likelihood is given by

p(X |α, μ, σ) =
∫
p(θ |α)

∏
�

∑
a

θa p(X� |μ(a), σ(a)) dθ

Themean-field variational algorithm forModel 1 parallels

the algorithm for LDA [1]. The variational approximation is

factored according to

qX(θ, {Z�}) = q(θ | γ)
∏
�

ϕ�,Z�
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where γ are Dirichlet parameters and ϕ�,a are multinomial

parameters, representing the estimated posterior probability

that segment � is generated from topic a. Using a coordinate
ascent algorithm, the variational lower bound on the signal

likelihood is maximized by iterating the following steps until

convergence:

γa = αa +
∑
�

ϕ�,a

ϕ�,a ∝ p(X� |μ(a), σ(a)) exp(Ψ(γa))

HereΨ denotes the digamma function. The estimated mixture
weights and labels for each segment are then given by

Eq(θa) =
γa∑
b γb
, â(�) = argmax

a
ϕ�,a

To estimate the model parameters, the variational parameters

φ�a are used in a variational E-step, updating the sufficient

statistics of the leaf topic models.

3.2. Model 2

In Model 2 we incorporate a segmentation model, using re-

cursive dyadic partitioning. We present the technique for one-

dimensional signals, but it extends easily to two dimensions.

Let p(T ) be a distribution over all dyadic trees overX . We re-
quire that p(T ) is additive on the leaves. The likelihood now
sums over all segmentations:

p(X | δ, α, μ, σ) =∑
T

p(T | δ)
∫
p(θ |α)

∏
�∈leaves(T )

∑
a

θa p
(
X� |μ(a), σ(a)

)
dθ

Variational inference in this case requires dynamic pro-

gramming. The variational approximation takes the factored

form

qX(T, θ, Z) = q(T | η) q(θ | γ) q(Z |ϕ)

We take q(θ | γ) to be Dirichlet with parameter γ, and take
q(Z |ϕ) = ∏� ϕ�,Z�

to be a product of multinomials, as be-

fore. The variational distribution over trees yields a segmen-

tation model for the signal; we take this to be a branching

process

q(T | η) =
∏

�∈leaves(T )
η�
∏

n∈internal(T )
(1− ηn)

Here the Bernoulli parameter ηn indicates whether or not node
n is split; at the lowest level we require ηn = 1. The varia-
tional parameters are now γ, η, and ϕ. The structure of the
signal emerges in the tree model q(T | η) and the segment
topic probabilities {ϕ�a}. The variational lower bound on the

log-likelihood is

�(X) ≥ Eq log p(θ) + Eq log p(T )

+
∑
�

q(� ∈ leaves(T ))
∑
a

ϕ�a (Eq log θa + log p(X� | a))

+H(q(θ)) +H(q(T )) + EqH(q(Z |T ))

with the probability q(� ∈ leaves(T )) calculated as

q(� ∈ leaves(T )) = η�
∏

n∈anc(�)
(1− ηn)

The entropy of the variational distribution over trees is

H(q(T )) =
∑
�

H(η�)
∏

n∈anc(�)
(1− ηn)

and the (average) entropy Eq(H(q(Z |T ))) is

EqH(q(Z |T )) = −
∑
�

q(� ∈ leaves(T ))
∑
a

ϕ�a logϕ�a

3.2.1. Iterative updates for variational parameters

We adopt a coordinate ascent algorithm where ϕ and γ are
estimated holding η fixed, and then η is estimated holding ϕ
and γ fixed. The updates for γ and ϕ are

γa = αa +
∑
�

q(� ∈ leaves(T ))ϕ�,a

ϕ�,a ∝ p(X� |μ(a), σ(a)) exp(Ψ(γa))

Now holding ϕ and γ fixed, and assuming for simplic-
ity that p(T ) is uniform, the updates for η� can be shown to
satisfy

log
(

η�
1− η�

)
= −Λleft(�) − Λright(�)

+
∑
a

ϕ�a (Eq log θa + log p(X� | a)− logϕ�a)

where Λn is computed recursively as

Λn = (1− ηn)
(
Λleft(n) + Λright(n)

)
+ ηn

∑
a

ϕ�a (Eq log θa + log p(X� | a)− logϕ�a)

After variational inference is carried out, the estimated labels

and segmentation is given by

(T̂ , {â(�)}) = argmax
T,a

q(T )
∏

�∈leaves(T )
ϕ�,a

where the argmax is computed using dynamic programming.
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Fig. 2. Synthetic signal with true segmentation demarcated by ver-
tical lines, and true labeling given by horizontal lines. Varying line

types of signal indicate labeling as inferred by Model 1, with four

segments spanning the five component signal.

Fig. 3. Hellinger distance between topic weights of 24 music pieces,
filtered through a sigmoid; the boxes delineate each composer, from

left to right: Bach, Chopin, Debussy, Haydn, Mozart, Scriabin.

The strongest inter-composer correlations are between Mozart and

Haydn, with some correlation between Bach’s Goldberg variations

and Mozart’s early works, both of which are also the most themati-

cally cohesive works, as inferred by their dark regions.

4. EXPERIMENTAL RESULTS

Testing data came from two sources: synthetic autoregres-

sive signals (some in the same form used in [10]) and key-

normalized MIDI files. The synthetic data provides grounds

to flex the segmentation muscles, whereas the music data is to

show the models’ ability to correlate examples.

The simplest synthetic data case, that of a signal com-

posed of fixed length samples of different signal types con-

catenated together, generally achieves zero classification er-

ror when analyzed using Model 1, even in difficult situations

where multiple signals of the same form are present. More re-

alistically, the component lengths were sampled from a Pois-

son process, and Model 1 must still follow fixed boundaries.

Figure 4 illustrates such an example. Here there are four sig-

nal types (“topics”) whereas only three are used in the learned

model. The model generalizes and uses one topic to cover two

similar topics (not shown), with another learned topic having

high variance to cover situations where the segmentation win-

dow occupies different topics evenly. Even with four topics

this situation persists. Model 2 handles these cases elegantly,

although it is much slower to train.

Future work includes further development of the models,

including the use of hiddenMarkov trees to model wavelet co-

efficients, and application to both music data and multi-modal

forms, such as pictures and text. All source code is planned

for Internet release.
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