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ABSTRACT

We introduce a xed-point algorithm, the complex QAM (C-QAM)
algorithm, for separation of quadrature amplitude modulated (QAM)
sources through independent component analysis. The algorithm
matches the input QAM distribution through a mixture of Gaus-
sian kernels and uses xed-point updates that fully take advantage of
complex domain processing. We demonstrate the performance of the
C-QAM algorithm through simulations and note that it provides im-
proved performance over a wide range of operating conditions such
as low signal-to-noise ratio, small sample sizes, and large number of
sources.

Index Terms— Quadrature amplitude modulation, Nonlinear
estimation

1. INTRODUCTION

Independent component analysis (ICA) for separating complex val-
ued signals is needed in many applications such as magnetic reso-
nance imaging, radar, and wireless communications. In this study,
we focus on the separation of QAM signals which have found wide
use in wireless communications systems using code division mul-
tiple access (CDMA). The receivers in these applications are typ-
ically quadrature channel, in that at each sample time an in-phase
and quadrature-phase value is generated. Thus the signal is inher-
ently complex valued.

In the case of CDMA, multi-user detection may be carried out
using several techniques such as matched lters or minimum mean
square estimation [1]. More recently, complex-valued ICA has been
used to improve CDMA detection by augmenting existing methods
as shown in [2], in delay estimation [3], and in interference mitiga-
tion [4, 5].

For complex-valued ICA algorithms that use nonlinearities to
implicitly generate higher-order statistics such as complex infomax,
nonlinear decorrelations, maximum likelihood (ML) [6, 7], and ne-
gentropy [8, 9], the optimal choice of nonlinearity is based on the
source distribution either through the score function in a likelihood
framework, or through entropy in maximization of negentropy. In
this study, we use a nonlinearity that matches the joint distribution
of a noisy QAM constellation using a mixture of Gaussian kernels.
The complex gradient and Hessian of the nonlinearity are derived
and are used to develop a complex-valued xed-point update. Im-
plementing the xed-point update in the complex domain through a
nonlinearity that matches the source distribution, we show leads to a
fast and ef cient algorithm for QAM source separation.
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2. C-QAM ALGORITHM

2.1. Complex ICA

A complex variable z is de ned in terms of two real variables zR

and zI as z = zR + jzI . Statistics of a complex random vector
x = xR + jxI is designated by the joint probability density func-
tion (pdf) px(xR,xI). The expectation of a complex random vector
x is then given with respect to this pdf and is written as E{x} =
E{xR} + jE{xI}. A circular random variable is de ned as being
invariant to rotation, i.e., the pdf of the complex random variable z
and ejαz are the same [10] for any α.

In ICA, the observed data z are typically expressed as a linear
combination of latent variables such that z = As where
s = [s1, . . . , sN ]T is the column vector of latent sources,
z = [z1, . . . , zN ]T is the column vector of observed mixtures, and
matrixA is theN ×N mixing matrix. We assume that the sources,
observations, and mixing matrix are complex valued. ICA then iden-
ti es the statistically independent sources given the observed mix-
tures typically by estimating a matrixW so that the source estimates
becomeWz. We assume without loss of generality that the sources
have zero mean and unit variance, i.e., E{ssH} = I.

2.2. C-QAM cost function

The complex QAM (C-QAM) algorithm we introduce for perform-
ing complex ICA of QAM sources, requires a preliminary sphering
or whitening transformV, resulting in

x = Vz = VAs = Âs

where E{xxH} = I. Note that Â, and thereforeW, are unitary as
I = E{xxH} = ÂE{ssH}ÂH = ÂÂH . Then each source, k, is
separately estimated by nding a vectorw such that yk = wH

k x.
C-QAM algorithm is based on maximization of nongaussianity

like the FastICA algorithm [11]. As shown in [12], the optimal mea-
sure of nongaussianity, based on providing the minimal asymptotic
variance estimate, is negentropy de ned for a real-valued vector y
as

Jneg(y) = H(ygauss)−H(y)

where H(y) = −E{log(p(y))} is the differential entropy, p(y) is
the joint pdf, and ygauss is a Gaussian random variable with the same
covariance matrix as y. In the complex case where we have the real
and imaginary components of source estimate yk, we use the 2-D
negentropy de ned as

Jneg(y
R
k , yI

k) = H(yR
gauss, y

I
gauss)−H(yR

k , yI
k)

= const.−H(yR
k , yI

k) (1)
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where H(yR
gauss, y

I
gauss) is the entropy of a Gaussian random vec-

tor and is constant due to the unit variance constraint. We conclude
from (1) that maximizing negentropy can be attained by minimiz-
ing the 2-D differential entropy H(yR

k , yI
k). From (1) we see that

when using entropy/nongaussianity as the cost function, the optimal
nonlinearity for complex-valued data is

J(w) = E
n

log pqam(wHx)
o

(2)

where pqam : R× R → R is the joint pdf of the QAM source to be
derived next. We start by noting that for noiseless complex-valued
M -QAM sources, the probability mass function (pmf) is

p(s) =

j
1
M

if s ∈ μ
0 otherwise

where μ is the set of complex points in the constellation, e.g., μ =
[1, j,−1,−j]T for a 4-QAM source as depicted in Figure 1(a). Our
signal model assumes the existence of noise, hence with the addition
of complex white Gaussian noise to the sources, a mixture of Gaus-
sian kernels shown in Figures 1(b) and (d) provide a good match to
the source distribution. Thus we model the pdf in equation (2) for an
M-QAM source with the Gaussian mixture model:

pqam(y) =
1

M2πσ2

MX
i=1

e

“ −1
2σ2 ((yR−μR

i )2+(yI−μI
i )2)

”

where σ2 is the variance. The pdf is now a differentiable function
which can easily be applied to a gradient-based optimization algo-
rithm.

2.3. C-QAM optimization

Given, the whitened observations x, we estimate each source, k, sep-
arately by nding a vectorw such that

yk = wH
k x = wH

k Âs = qH
k s (3)

where qk = [0, . . . , qk, 0, . . .]T . Constraining the source estimates
such that E{yky∗k} = 1, also constrains the weights to ‖w‖2 = 1
due to the whitening transform. The optimal weight is then found by
maximizing the cost with the unit norm equality constraint given by

wopt = arg max
||w||2=1

E{log pqam(wHx)}. (4)

From (3), we see that at convergence the optimal solution becomes
qopt = [0, . . . , ejθ, 0, . . .]T indicating that the source estimate is a
phase shifted version of the source. This phase shift, as shown in
[9], aligns with the distribution of the source. Intuitively, this means
that the cost function is maximized when the source is rotated to
align with the Gaussian mixture model nonlinearity, i.e., the peaks
of the Gaussian mixture model align with the signal constellation
(see Figure 1). Thus, the phase ambiguity that exists in complex
ICA is alleviated when working within the framework we describe,
an important advantage for applications where the phase information
is important.

3. FIXED-POINT ALGORITHM

We derive the xed point algorithm for the constrained optimization
problem de ned in (4) using a Newton’s method based on the La-
grangian function

L(w, λ) = J(w) + λ(wHw − 1) (5)

(a) 4-QAM signal constellation (b) 4-QAM Gaussian mixture model

(c) 16-QAM signal constellation (d) 16-QAM Gaussian mixture model

Fig. 1. Signal constellations for 4-QAM and 16-QAM sources with
20-dB SNR along with the Gaussian mixture model in the complex
plane.

where λ is the real-valued Lagrange multiplier and J , the cost, is
de ned in (2).

We make use of the complex gradient and Hessian derived in
[13] where the Newton update is de ned as

Δw̃ = −
„

∂2f

∂w̃∗∂w̃T

«−1
∂f

∂w̃∗

= −H−1
f ∇̃∗f

where H is the complex Hessian, ∇̃∗ is the conjugate gradient and
complex vectors, denoted with a tilde, are of the form z̃ ∈ C

2N =
[z1, z

∗
1 , . . . , zN , z∗N ]T . The Newton update to the Lagrangian (5) is

written as
Δw̃ = −(HJ + λI)−1(∇̃∗J + λw̃n)

and upon expanding we obtain

(HJ + λI)w̃n+1 = −∇̃∗J + HJw̃n (6)

whereΔw̃ = w̃n+1 − w̃n. The conjugate gradient, ∇̃∗J , derived in
the Appendix is

∇̃∗J = 1/2E {xg∗(y)}
where y = wHx. The complex Hessian, also derived in the Ap-
pendix, is given by

HJ = E

8>>>>><
>>>>>:

2
666664

x1x
∗
1g
′
a(y) x2

1g
′
b(y) . . .

(x2
1)
∗g′∗b (y) x1x

∗
1g
′
a(y) . . .

...
...

...
xNx∗1g

′
a(y) xNx1g

′
b(y) . . .

(x2
N )∗g′∗b (y) xNx∗1g

′
a(y) . . .

3
777775

9>>>>>=
>>>>>;

.

We writeHJ the sum of two matrices,HJ = Ha
J + Hb

J , where

Ha
J = E

8<
:
2
4 x1x∗1g′a(y) 0 x1x∗2g′a(y) . . .

0 x∗1x1g′a(y) 0 . . .
...

...
...

...

3
5
9=
;

and

Hb
J = E

8<
:
2
4 0 x1x1g′b(y) 0 . . .

x∗1x∗1g′∗b (y) 0 x∗1x2g′∗b (y) . . .
...

...
...

...

3
5
9=
;
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to rewrite the productHJw̃ as

HJw̃ = Ha
Jw̃ + Hb

Jw̃. (7)

Expanding (7) and simplifying by retaining the non-conjugated val-
ues or odd-numbered rows results in

HJw = E
n
xxHg′a(y)

o
w + E

n
xxT g′b(y)

o
w∗ (8)

with HJw ∈ C
N . Substituting (8) into (6) and making use of the

approximation, E{xixjf(y)} ≈ E{xixj}E{f(y)}, and the white-
ness of x we obtain

Kwn+1 = −1/2E{xg(y)}+ E{g′a(y)}wn +

E{xxT }E{g′b(y)}(wn)∗ (9)

whereK = (HJ+λI). Howwell the approximationE{xixjf(y)} ≈
E{xixj}E{f(y)} is satis ed depends on the function f(·) and the
data statistics. In the cases we studied, the difference |E{xixjf(y)}−
E{xixj}E{f(y)}| < γ where γ = 10σ2

x initially and γ → 0 as
the algorithm iterates since then y = wHx→ si.

At the convergence point, K becomes real valued, as shown in
[14], and can be removed from (9) due to the subsequent normaliza-
tion ofw to unit norm. Our xed-point update now becomes

wn+1 = −1/2E{xg(y)}+ E{g′a(y)}wn +

E{xxT }E{g′b(y)}(wn)∗.

4. SIMULATIONS

We verify the performance of the C-QAM algorithm presented in
this paper rst using 4-QAM sources and then 16-QAM sources
with added white complex Gaussian noise as depicted in Figure 1.
We measure the performance at various signal to noise ratios (SNR)
as the number of samples and number of sources are adjusted. We
test the performance of C-QAM against joint approximate diago-
nalization of eigenmatrices (JADE) [15] and complex FastICA (C-
FastICA) [8] with nonlinearityG(y) = log(.1+|y|2). We also com-
pare performance with a more recent xed-point algorithm (C-FP)
proposed in [16] that showed promising performance for this type of
problem. The C-FP algorithm uses a nonlinearity based on kurto-
sis and takes into account the noncircular nature of the sources. For
C-QAM, C-FastICA, and C-FP, we implement symmetric orthog-
onalization such that all sources are estimated in parallel and the
demixing matrix is orthogonalized using W ← (WWH)1/2W.
We noted slightly better results using symmetric orthogonalization
rather than using the de ationary mode. For C-QAM, in these sim-
ulations, we we did not pursue adapting the variance, σ2, to the
sources but chose a xed value of .5 for 4-QAM and .2 for 16-QAM.

The performance of the algorithms are measured using the in-
tersymbol interference index (ISI), quantifying the distance of the
permutation matrix P = WA from the optimum, de ned as

ISI(P) =
1

N

NX
i=1

"
NX

k=1

|Pik|
maxk |Pik| − 1

#

where the lower the ISI value the better the separation with zero
de ning perfect separation. The results are averaged over 100 runs
with the mixing matrix and realizations of the sources recalculated
on each run.

Figures 2 and 3 depict the performance of the algorithms with
ten 4-QAM and ten 16-QAM sources respectively. The number

(a) 10-dB SNR (b) 20-dB SNR

Fig. 2. ISI vs. number of samples for 10-dB and 20-dB SNR levels
with 4-QAM sources.

(a) 10-dB SNR (b) 20-dB SNR

Fig. 3. ISI vs. number of samples for 10-dB and 20-dB SNR levels
with 16-QAM sources.

of samples is varied from 50 to 750 at SNR levels of 10-dB and
20-dB. We observe that C-QAM signi cantly outperforms JADE
and C-FastICA at both SNR levels as seen in Figure 2. We see a
more modest improvement, about 1-dB, against C-FP speci cally
with small sample sizes and low SNR levels with 4-QAM sources.
However C-QAM signi cantly outperforms all algorithms with 16-
QAM sources as seen in Figure 3. This seems to indicate that ex-
plicitly matching the nonlinearity to the source distribution provides
substantial improvement over non-matching nonlinearities such as
kurtosis.

Figure 4 depicts the performance of the algorithms as the num-
ber of sources is varied from 5 to 30 at SNR levels of 10-dB (a) and
20-dB (b). Again we observe that C-QAM provides improved per-
formance, in this case, by extending the usable range of operation as
the number of sources grow.

5. CONCLUSIONS

In this paper, we presented the C-QAM algorithm for separation of
QAM signals in a noisy environment. We derived a xed-point al-
gorithm in the complex domain using a Gaussian mixture model for
the nonlinearity. We show that explicitly matching the nonlinear-
ity to the QAM source distribution provides improved performance,
even when when confronted with low SNR signals, small sample
sizes, or a large number of sources.

A. APPENDIX

We make use of the complex gradient

∂f

∂z
=

1

2

„
∂f

∂zR
− j

∂f

∂zI

«
; ∂f

∂z∗
=

1

2

„
∂f

∂zR
+ j

∂f

∂zI

«
(10)
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(a) 10-dB SNR (b) 20-dB SNR

Fig. 4. ISI vs. number of 4-QAM sources with different SNR levels
(400 samples).

and Hessian
∇2

qqf(z0) =
∂2f(z)

∂z∗zT

˛̨̨
˛
z=z0

(11)

for non-analytic functions as de ned in [13] where complex vectors
are of the form z = [z1, z

∗
1 , . . . , zN , z∗N ]T .

The complex gradient of (2) is found by applying (10) and the
chain rule to nd the partial derivative

∂J(w)

∂w∗i
=

1

2
E

j
∂ log pqam(wHx)

wR
i

+ j
∂ log pqam(wHx)

wI
i

ff

=
1

2
E

j„
gR(y)

∂(wHx)R

∂wR
i

+ gI(y)
∂(wHx)I

∂wR
i

«
+

j

„
gR(y)

∂(wHx)R

∂wI
i

+ gI(y)
∂(wHx)I

∂wI
i

«ff

where

gR(y) =
∂ log pqam(y)

∂yR
=

−1

M2πσ4pqam(y)

MX
i=1

(yR − uR
i )eγ(y),

gI(y) =
∂ log pqam(y)

∂yI
=

−1

M2πσ4pqam(y)

MX
i=1

(yI − uI
i )e

γ(y),

and γ(y) = −1
2σ2 [(yR − uR

i )2 + (yI − uI
i )

2]. Noting that

∂(wHx)R

∂wR
i

= xR
i

∂(wHx)R

∂wI
i

= xI
i

∂(wHx)I

∂wR
i

= xI
i

∂(wHx)I

∂wI
i

= −xR
i

(12)

we nd

∂J(w)

∂w∗i
=

1

2
E

n
gR(y)xR

i + gI(y)xI
i + j

“
gR(y)xI

i − gI(y)xR
i

”o

=
1

2
E {xig

∗(y)} (13)

where the last line uses complex notation.
The complex Hessian is similarly found by applying (10) and

(11) to (2). Starting with (13), we nd the second derivative

∂2J(w)

w∗i wk
= 1

4
E

n
xi

h
∂(gR(y)−jgI (y))

∂wR
k

− j ∂(gR(y)−jgI (y))

∂wI
k

io
= 1

4
E

˘
xi

ˆ
xR

k (gRR + gII) + xI
k(gRI − gIR)+

j
`
xR

k (gRI − gIR)− xI
k(gRR + gII)

´˜¯
= 1

4
E

˘
xix

∗
k

ˆ
gRR + gII + j(gRI − gIR)

˜¯
= E

˘
xix

∗
j g′a

¯

where we used (12) and de ne

gRR ≡ ∂gR(y)
∂yR

= (gR(y))2 +
PM

i=1
eγ(y)

M2πpqam(y)

h
−1
σ4 +

(yR−uR
i )2

σ6

i
gII ≡ ∂gI (y)

∂yI
= (gI(y))2 +

PM
i=1

eγ(y)

M2πpqam(y)

h
−1
σ4 +

(yI−uI
i )2

σ6

i
gIR ≡ gRI = ∂gR(y)

∂yI
= gR(y)gI(y) +

PM
i=1

(yR−uR
i )(yI−uI

i )

M2πσ6pqam(y)
eγ(y)

and g′a ≡ 4[gRR + gII + j(gRI − gIR)]. Using similar steps we
nd

∂2J
∂w∗i wj

= E{xix
∗
j g′a} ∂2J

∂w∗i w∗j
= E{xixjg

′
b}

∂2J
∂wiwj

= E{x∗i x∗j g′∗b } ∂2J
∂wiw∗j

= E{xix
∗
j g′a}

where g′b = 4[gRR − gII + j(gRI + gIR)].
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