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ABSTRACT

A new multi-aspect target detection method is presented based
on the in nite hidden Markov model (iHMM). The scatter-
ing of waves from multiple targets is modeled as an iHMM
with the number of underlying states treated as in nite, from
which a full posterior distribution on the number of states as-
sociated with the targets is inferred and the target-dependent
states are learned collectively. A set of Dirichlet processes
(DPs) are used to de ne the rows of the HMM transition
matrix and these DPs are linked and shared via a hierarchi-
cal Dirichlet process (HDP). Learning and inference for the
iHMM are based on an effective Gibbs sampler. The frame-
work is demonstrated using measured acoustic scattering data.

Index Terms— Hierarchical Dirichlet processes, hidden
Markov models, acoustic signal detection

1. INTRODUCTION

In many sensing scenarios the target is observed from multi-
ple target-sensor orientations (or aspects), and the underlying
acoustic or electromagnetic scattered waveforms are highly
dependent on the aspect. This angle-dependence property is
largely due to the physical composition of the target. It is
often dif cult to achieve reliable classi cation based on a sin-
gle view of the target; this is because the waveforms emitted
from two different targets may be similar at certain angles and
easily confused for classi cation. This motivates using a se-
quence of multiple aspect-dependent looks at a single target,
with this sequential information offering the potential to sub-
stantially improve identi cation performance.

Hidden Markov models (HMMs) have been successfully
applied to model such sequential data for multi-aspect tar-
get detection and classi cation problems [1, 2]. Each HMM
“state” represents a set of generally contiguous target-sensor
orientations over which the signal statistics are relatively in-
variant. A length T observation sequence implicitly samples
a sequence of T target states. The probability of transition-
ing from one state to another on consecutive measurements
is modeled as a Markov process. Furthermore, because the
target is usually concealed or distant, the target-sensor orien-
tation is unknown and the actual sampled state sequence is

hidden, motivating an HMM.
In the context of target classi cation using HMMs, a key

issue is to develop a methodology for de ning an appropriate
set of states. Ideally, an HMM state should be de ned by a set
of angles for which a particular class of underlying physics
dominates. However, in many problems it is not possible to
easily nd a relationship between the physics and the under-
lying HMM state. In previous work the state decomposition
has been performed in an ad hoc manner [1, 2], requiring trial
and error to manually select the model structure, (e.g., num-
ber of states). In the work reported here we investigate the
idea of an in nite hidden Markov model (iHMM), which by
construction has an in nite number of hidden states and the
proper number of states associated with a target is inferred
automatically. The iHMM is constituted by a hierarchical
Dirichlet process (HDP) [3], a nonparametric Bayesian prior
for sharing clusters among related groups. However, the HDP
assumes a xed partition of groups of data, while the group
partition is random in an iHMM. In addition, the iHMM must
utilize the assumed underlying temporal information of the
sequential data, which is not considered in the original HDP.

Another limitation of target classi cation algorithms is
that they usually require substantial training data, assumed to
be similar to the data on which the algorithm is tested. Unfor-
tunately, in many sensing applications one often has limited
training data from a target. In acoustic target classi cation
problems, for instance, one may have multiple sets of limited
scattering data, with each data set collected from different but
related targets. Rather than building models for each target
individually, as adopted in [1, 2], it is desirable to appropri-
ately share the information among these related targets, thus
offering the potential to improve overall classi cation perfor-
mance. The iHMM effectively solves this problem using the
HDP framework.

Teh et al. [3] give a brief introduction to applying HDP
for the iHMM. Here we perform a more expansive study of in-
formation sharing between multiple HMMs using the iHMM.
We give examples of a new application, in particular multi-
aspect target detection using the iHMM. We demonstrate how
the iHMM may be used to build a single model for a class of
targets, and how the learned model yields information about
the physical characteristics and the relationships between the
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targets within the class. These ideas are demonstrated using
measured acoustic scattering data, with comparison to more
traditional techniques.

2. BACKGROUND

2.1. Dirichlet Process Mixture Models

Let H be a measure on a space Θ, and let γ be a positive real
number. A Dirichlet process (DP) [4] is a distribution for a
random density function G(θ), denoted by G ∼ DP (γ,H).
The “base” distributionH provides the prior information ofG
with E[G] = G0, and the concentration parameter γ controls
how similar G is to H . Samples drawn from DP (γ,H) are
discrete with probability one [4], a property made explicit by
the stick-breaking construction [5]

G(θ) =

∞∑
k=1

βkδθ∗

k
βk = β

′

k

k−1∏
l=1

(1−β
′

l) β
′

k ∼ Beta(1, γ),

(1)
where δθ∗

k
is a discrete measure concentrated at θ∗k. The count-

ably in nite random parameters {θ∗k}
∞

k=1
are independently

sampled from H , and the weight variables {βk}∞k=1
are de-

ned by a Beta distribution that partitions a unit-length “stick”.
A Dirichlet process is commonly used as a nonparametric

prior distribution for a mixture model with unbounded num-
ber of components [6]. Assume the observation xi is gen-
erated from a distribution F with parameter θi. The den-
sity function on the θ’s is G, which is assumed to be drawn
from DP (γ,H), and thus we have a Dirichlet process mix-
ture model. A graphical representation of a DP mixture model
is given in Fig. 1(a). Indicator variable zi denotes the mix-
ture component generating the data point xi ∼ F (θ∗zi), i.e.,
θi = θ∗zi . With DP as a prior on G the number of mixture
components is treated as in nite and the actual ( nite) com-
ponents used by the mixture model are inferred automatically
from the data (via the data-dependent likelihood function).

2.2. Hierarchical Dirichlet Processes

The HDP considers problems of multiple related groups of
data, where each group is described by an in nite mixture
model and the mixture components are shared across groups.
Assume we have J groups of data. To construct an HDP, a
global probability measure G0 ∼ DP (γ,H) is rst drawn to
de ne the mixture components, and then Gj ∼ DP (α,G0)
is sampled independently for each group. The discreteness
of G0 (as shown in (1)) guarantees that the Gj’s will reuse
the same set of shared mixture components de ned in G0 but
with different proportions [3]:

G0 =
∞∑
k=1

βkδθ∗

k
Gj =

∞∑
k=1

wjkδθ∗

k
wj ∼ DP(α,β),

(2)
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Fig. 1. (a) Graphical model representation of a DP mixture model
using (1). (b) Graphical model representation of a hierarchical
Dirichlet process (HDP) mixture model using (2).

wherewj is in nite-dimensional probability mass function.
The HDP can be used to model J groups of coupled in -

nite mixture models. The graphical model of an HDP mixture
is shown in Fig. 1(b), where datum xji in group j is generated
by rst drawing θji ∼ Gj , then sampling xji ∼ F (θji). Pa-
rameters {θ∗k}

∞

k=1
are the set of shared mixture components

de ned in G0, and zji is the indicator variable for which
θji = θ∗zji .

3. INFINITE HIDDEN MARKOV MODEL

3.1. HMM for Multi-Aspect Target Sensing

Using HMMs for multi-aspect target detection and classi ca-
tion has been described in [1, 2]. In many applications, the
HMM structure is given from previous practical experience
or by “experts”, and model learning focuses on estimating the
parameters from the data. Typically maximum-likelihood pa-
rameter learning is performed via the EM algorithm [7], with
the number of states assumed known. However the HMM
is only a model for the real target scattering, and therefore
there may not be a single “correct” HMM structure, i.e., a
xed number of states. Rather than performing model selec-

tion to select a xed number of states [8], we employ a fully
Bayesian approach in which the number of states is not xed
a priori. The nonparametric HDP is employed to implicitly
construct an HMM with an in nite number of states (iHMM),
even though in reality the posterior on the number of states is
usually peaked about a nite number of states characteristic
of the sequential data used for model training.

3.2. Learning iHMM via HDP

An N -state HMM can be considered as a set ofN coupled -
nite mixture models (each withN mixture components). That
is, the value of previous state st−1 indexes a speci c row of
the transition matrix serving as the mixture weights for choos-
ing current state st. Given the value of st, the observation ot
is sampled from the observation model (mixture component)
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Fig. 2. The in nite hidden Markov model interpreted as an HDP.
For observation ojt, sjt−1 de nes the mixture model to be used and
sjt selects the mixture component according to in nite dimension
weight vector wsjt−1

.

indexed by st. To consider an in nite number of states, it is
natural to use a set of state-speci c DPs, one for each value
of the state. Furthermore, these DPs must be shared because
they use the same set of mixture components de ned in the
observation matrix. This is similar to the HDP mixture model
but with a key difference being that the data (observations) to
group partition is xed in the HDP while the group partition is
random (indexed by the hidden previous state) in the iHMM.

The HDP construction of the iHMM for multi-aspect tar-
get sensing is shown in Fig. 2, with parameters de ned as

ojt | sjt, {θ
∗

k}
∞

k=1 ∼ F (θ∗sjt) {θ∗k}
∞

k=1 | H ∼ H

sjt | sjt−1, {wn}
∞

n=1 ∼Mult(wsjt−1
)

{wn}
∞

n=1 | α,β ∼ DP(α,β) β | γ ∼ Stick(γ), (3)

wherewn corresponds to the row of transition matrix A, and
F (θ∗k) corresponds to the observation model bk(·). Each sam-
pled scattered waveform (observation) is represented with an
L-dimensional feature vector ojt = [o1jt, . . . , o

L
jt] and the fea-

ture vector is assumed to be generated from a signal modelF .
For a continuous HMM, F is an L-dimensional Gaussian and
θ represents the mean vector and covariance matrix, while for
a discrete HMM θ represents the parameters of a multinomial
distribution. When the data sequences correspond to scatter-
ing from a class of targets, rather than build HMMs for each
target separately, we may use the iHMM to learn the state
structure underlying the data from all targets within the class.
A class-based iHMM generalizes well to detection of a tar-
get not seen when training, as long as the new target residues
within the class of training targets.

The iHMM learning is based on an extension of the HDP
Gibbs sampler [3] with temporal information considered. Let
S−t denote the hidden state sequence excluding st, andO de-
notes the observation sequence. Using the rst order Markov
property, we have

p(st = k | S−t,O) = p(st = k|st−1 = j, st+1 = l, ot) ∝{
(n
−js′t
jk + αβk)

αβl+nkl
α+
�

K
k′=1

nkk′

f−otk (ot), if k ∈ {1, . . . ,K};

(0 + αβu)βst+1
f−otknew(ot), if k = knew,

(4)

with s′t the previous sampled value of st, njk the count of
transitions from state value j to state value k and βk the mix-
ing weight for state (mixture component) k. The rst two
terms are contributed from the HDP prior and the third term
is from the data likelihood. The number of states in this algo-
rithm is automatically inferred from the data.

4. EXPERIMENTAL RESULTS ON TARGET
MODELING AND DETECTION

We consider a target detection problem based on multi-aspect
measured acoustic scattering data. Five shell targets are con-
sidered as “targets of interest”, and six clutter items are con-
sidered as false targets. The details of the shell targets and
the clutter are described in [1, 2, 9]. The goal is to test if a
new target is in the family of shell targets or not. To setup the
experiment, we train on four shell targets and the item under
test is the remaining one shell target (label 1) or one of the six
false targets (label 0). All six of the false targets and the held
out shell target were not seen when training. When testing we
consider each possible test item, as viewed from all possible
initial angles.

We compare development of a single HMM (SHMM) for
each of the four training targets, and a single HMM designed
for all four training targets (class-based iHMM), and in both
cases the iHMM is used for model design. We note that for the
SHMM, there are counterpart models that may be designed
using the conventional EM algorithm, one model for each
shell. The number of HMM states may be inferred for the
target-dependent HMMs using physical considerations (note
that for the EM solution the number of states is set a priori,
and xed). By contrast, for the class-based iHMM (single
iHMM for all four training targets), it is dif cult to have an
analog computed using the EM algorithm, because the proper
number of states is dif cult to determine (some states asso-
ciated with the single targets may be shared, and others not
shared, and this decomposition is dif cult to determine a pri-
ori). A signi cant advantage of the iHMM is that it adap-
tively determines a posterior on the proper number of states,
automatically learning the appropriate state sharing structure
across the four training targets. We also note that this class-
based iHMM, by sharing data across the training targets, will
not model any one of the training targets, but will rather in-
fer relationships between the multiple training targets within
this class. This generalization is bene cial when testing on
targets not seen while training, as long as the testing targets
of interest are within the class of training data.

This generalization is re ected in the results presented in
Fig. 3, for which the class-based iHMM consistently outper-
forms the iHMMs designed for each of the training targets
separately. The results are measured by Receiver Operation
Characteristic (ROC) curves. We show in Fig. 4 the poste-
rior distribution on the number of states associated with the
class-based iHMM (for case 1 in Fig. 3), running 100000
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Fig. 3. Detection results for different sets of targets using the
SHMM and the class-based iHMM. The results are presented with
the respective shell target held out of the training set.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

Number of states

Fig. 4. Posterior distribution on model structure (the number of
states) for case 1 in Fig. 3

Gibbs iterations after a 10000 burnin step, collecting 400 pos-
terior samples with a spacing of 250 samples. To see the re-
lationship of target-dependent states across the shell targets,
we train the class-based iHMM on the collection of all ve
shell targets and plot the hidden state distribution based on
the last Gibbs iteration, with the result depicted in Fig. 5. We
observe that the underlying states are shared over all targets,
showing the utility of using the class-based iHMM over the
single HMMs.

5. CONCLUSION

The in nite hidden Markov model (iHMM) is proposed to
solve the fundamental problem of model selection in hidden
Markov models as well as the problem of state information
sharing between HMMs. Promising iHMM results have been
obtained using scattering data from real elastic targets. It
is shown that the iHMM not only provides a full posterior
distribution on the number of hidden states, but also shares
the underlying state information among different targets, with
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Fig. 5. Hidden state distribution across all ve shell targets. Note
that many targets within the same class share states

this providing better generalization performance compared to
other competing methods.
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