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ABSTRACT

The goal of this paper is the development of a novel ef cient online
kernel-based algorithm for classi cation. The spirit of the algorithm
stems from the recently introduced Adaptive Projected Subgradient
Method. This is a general convex analytic tool that employs projec-
tions onto a sequence of convex sets and it can be considered as a
generalization of the celebrated APA algorithm, widely used in clas-
sical adaptive ltering.
Keywords: Pattern classi cation, Adaptive systems.

1. INTRODUCTION

Kernel-based methods have been showing signi cant success in mod-
ern pattern analysis [1, 2]. They have been applied mostly to batch
schemes, i.e., cases where all the training data are available before-
hand (e.g., support vector machines). Although hybrid batch meth-
ods can be derived by using, for example, a sliding buffer, genuine
online kernel-based learning algorithms for real-time applications
are mostly desirable [3].

An ef cient online kernel-based learning algorithm was recently
introduced in [3] that builds upon stochastic gradient descent con-
cepts. The algorithm in [3] surmounts the obstacles often appearing
in real-time settings, generalizes the kernel perceptron method, and
when applied to online classi cation problems exhibits low compu-
tational load and misclassi cation errors.

The present paper reformulates the general kernel-based classi-
cation problem as the problem of nding a point that belongs to a

halfspace; a closed convex subset of a Hilbert space. In a real-time
setting, new training data arrive at every time instant and online clas-
si cation becomes the problem of nding a point that belongs to the
intersection of a sequence of halfspaces. An algorithmic solution
is given by the very recently introduced Adaptive Projected Sub-
gradient Method (APSM) [4, 5]. This is a general convex analytic
tool, which for the problem at hand, is realized by taking simple pro-
jections onto the sequence of the halfspaces. The resulting online
classi cation algorithm exhibits a computational load of the same
order as that of the method in [3] and the classical kernel percep-
tron algorithm but with a distinctly superior performance regarding
convergence.

2. MATHEMATICAL PRELIMINARIES

We will denote the set of all integers, nonnegative integers, positive
integers, and real numbers by Z, Z≥0, Z>0, and R respectively.

The main stage of our discussion will be a real Hilbert spaceH,
equipped with an inner product denoted by 〈f1, f2〉, ∀f1, f2 ∈ H
[6]. The induced norm will be denoted by ‖f‖ := 〈f, f〉1/2, ∀f ∈
H.

In modern pattern analysis [1, 2] a classi cation task of a set X
of vectors in the data space R

m, m ∈ Z>0, is usually reformed by
mapping the data X into a higher dimensional space H, which is a
Reproducing Kernel Hilbert Space (RKHS) [1, 2, 7]. This RKHS
H, which is called feature space in the context of pattern analysis, is
often of very high or even in nite dimension. The advantage of such
a mapping is to make the task more tractable, by employing a linear
classi er in the feature space, exploiting Cover’s theorem [1]. At the
heart of such a mapping lies a kernel function κ. Given an RKHSH,
the associated kernel function κ : R

m×R
m → R [1, 2, 7] de nes the

mapping from R
m toH, i.e., φ : R

m → H : x �→ φ(x) := κ(x, ·).
In this way the data X ⊂ R

m are mapped to φ(X ) ⊂ H. We stress
here that any point f of H, such as κ(x, ·) for any x ∈ R

m, is a
function from R

m into R. That is, H is basically a Hilbert space of
functions and is given by the closure of the linear span of {κ(x, ·) :
x ∈ R

m} [2, 7]. Moreover, the following reproducing property is
satis ed in an RKHSH [2, 7]:

〈f, κ(x, ·)〉 = f(x), ∀f ∈ H,∀x ∈ R
m. (1)

This implies in particular ‖κ(x, ·)‖2 = 〈κ(x, ·), κ(x, ·)〉 = κ(x, x).
There are numerous kernel functions and associated RKHS H

with rich applications in pattern analysis [1, 2]. Examples of kernel
functions are i) the linear kernel κ(x, y) := xty, ∀x, y ∈ R

m, where
the superscript (·)t denotes transposition (in this case the RKHS
H is the data space R

m itself), ii) the Gaussian kernel κ(x, y) :=

exp(− (x−y)t(x−y)

2σ2 ), ∀x, y ∈ R
m, where σ > 0, and iii) the poly-

nomial kernel κ(x, y) := (xty + 1)d, ∀x, y ∈ R
m, where d ∈ Z>0.

A subset C ofH will be called convex if ∀f1, f2 ∈ C, the point
λf1+(1−λ)f2 ∈ C, ∀λ ∈ (0, 1). Let us give an example of a closed
convex set in a real Hilbert space. Given a 
= 0 ofH and ξ ∈ R, let
a halfspace be the closed convex set Π := {h ∈ H : 〈a, h〉 ≥ ξ}.
A function Θ : H → R will be called convex if ∀f1, f2 ∈ H, and
∀λ ∈ (0, 1), we have Θ(λf1+(1−λ)f2) ≤ λΘ(f1)+(1−λ)Θ(f2).

Given any point f ∈ H, we can quantify its distance from a
closed convex set C by the function

d(f, C) := inf{‖f − h‖ : h ∈ C}, ∀f ∈ H. (2)

The function d(·, C) is nonnegative, continuous, and convex [8].
Note that any point h ∈ C is of zero distance from C, i.e., d(h, C) =
0. Thus, the set of all minimizers of d(·, C) overH is C itself.

Given an element f and a closed convex set C of a Hilbert space
H, an optimal way to move from f to a point in C, i.e., to a mini-
mizer of d(·, C), is by means of the metric projection mapping PC

onto C, which is de ned as the mapping that takes f to the uniquely
existing point PC(f) of C that achieves the in mum value in (2):
‖f − PC(f)‖ = d(f, C) [6]. Clearly, if f ∈ C then PC(f) = f .
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For a halfspace Π in a real Hilbert space, the metric projection
operator PΠ has a closed form expression, i.e., to move from f to a
point in Π only one step is needed [4]:

PΠ(f) = f +
(ξ − 〈a, h〉)+

‖a‖2 a, ∀f ∈ H, (3)

where τ+ := max{0, τ} stands for the positive part of τ ∈ R.
The metric projection mapping PΠ is the most ef cient way to nd a
point in the halfspace Π. Moreover, since it belongs to the wide class
of metric projection mappings onto closed convex sets, it enjoys sev-
eral remarkable properties that can lead to very effective iterative so-
lutions (see [4, 5] and the references therein). Note also that (3) is
basically a generalization of projecting a point onto a hyperplane in
a Euclidean space.

3. KERNEL-BASED CLASSIFICATION REVISITED

Consider the data space R
m and a set X := {x1, x2, . . .} ⊂ R

m

which consists of vectors drawn from two classes. Each vector,
xn, in X is associated to a label yn ∈ Y := {±1}, depending
on the respective class. In this way a set of pairs is formed S :=
{(x1, y1), (x2, y2), . . .} ⊂ X × Y . Let also a kernel κ and H the
associated RKHS.

Given a margin ρ ≥ 0, the (binary) classi cation problem is
de ned as selecting a function f ∈ H and an offset b ∈ R such
that y(f(x) + b) ≥ ρ, ∀(x, y) ∈ S [1, 2]. For convenience we can
merge the unknown quantities f ∈ H and b ∈ R as a single vector
u := (f, b) ∈ H×R. Henceforth, we will call the point u ∈ H×R

a classi er, andH× R the space of all classi ers.
The spaceH×R of all classi ers can be endowed with an inner

product as follows: for any u1 := (f1, b1), u2 := (f2, b2) ∈ H ×
R, let 〈u1, u2〉 := 〈f1, f2〉 + b1b2. Thus, the space H × R of all
classi ers becomes a Hilbert space.

A standard penalty function used for classi cation problems is
the soft margin loss function [3, 1] de ned on H × R as follows:
given (x, y) ∈ S and the margin parameter ρ ≥ 0,

lx,y
ρ (u) : (f, b) �→ (ρ− y(f(x) + b))+ = (ρ− yg(x))+, (4)

where g(·) := f(·) + b. By the above de nition and given (x, y) ∈
S, if the classi er u = (f, b) is such that yg(x) < ρ, then this
classi er fails to achieve the margin ρ and (4) scores a penalty. In
such a case we say that the classi er committed a margin error. The
boundary hypersurface of the data space R

m that separates the two
classes is given by {x ∈ R

m : g(x) = 0}. A misclassi cation
occurs if there exists an (x, y) ∈ S such that yg(x) < 0.

It is natural therefore to look for those classi ers that minimize
the soft margin error function. A stochastic gradient descent al-
gorithmic solution towards this direction is presented in [3]. The
scheme not only generalizes the kernel perceptron method but also
offers an ef cient truly online learning method as opposed to hybrid
batch algorithms [2].

Here we will approach the classi cation task from a slight differ-
ent perspective. Our goal is to seek for classi ers or points inH×R

that belong to the set Πx,y
ρ := {u ∈ H × R : y(f(x) + b) ≥ ρ}.

If we recall the reproducing property (1), a desirable classi er, i.e., a
classi er that belongs to Πx,y

ρ , would satisfy 〈f, yκ(x, ·)〉+ by ≥ ρ.
By the de nition of the inner product inH×R, we clearly have that
the set of all desirable classi ers (that do not make a margin error)
is

Πx,y
ρ = {u ∈ H× R : 〈u, vx,y〉 ≥ ρ}, (5)

where vx,y := (yκ(x, ·), y) = y(κ(x, ·), 1) ∈ H × R. Moreover,
by (4) the set of all minimizers of the soft margin loss function is
arg min{lx,y

ρ (u) : u ∈ H× R} = Πx,y
ρ .

Πx2,y2
ρn

un

PΠ
x2,y2
ρn

(un)

Πx1,y1
ρn

Πx1,y1
rn

Πx2,y2
rn

∑2
j=1 ω

(n)
j P

Π
xj,yj
ρn

(un)PΠ
x1,y1
ρn

(un)

H× R

Fig. 1. Illustration of the projection onto a halfspace. The concurrent
processing in (7) averages the projections onto the halfspaces. By
projecting onto Πx,y

ρ instead of Πx,y
r , where ρ = γr (γ ≥ 1), we

move deeper into Πx,y
r . This and concurrent processing take us faster

to the intersection
�

j∈Jn
Π

xj ,yj
rn .

Notice that Πx,y
ρ is a halfspace of the Hilbert spaceH×R. Given

a point u ∈ H×R, the most ef cient way to move to a desirable clas-
si er in Πx,y

ρ is by means of the metric projection mapping PΠ
x,y
ρ

as
follows: by (3) and the fact that ‖vx,y‖2 = 1 + κ(x, x) we obtain

PΠ
x,y
ρ

(u) = u + y
(ρ− yg(x))+

1 + κ(x, x)
(κ(x, ·), 1). (6)

Recall that d(u, Πx,y
ρ ) =

���u− PΠ
x,y
ρ

(u)
���. As such,

d(u, Πx,y
ρ ) =

(ρ− yg(x))+
�

1 + κ(x, x)
=

lx,y
ρ (u)

�
1 + κ(x, x)

,

which suggests that the problem of minimizing the soft margin loss
function lx,y

ρ (·) is equivalent to minimizing d(·, Πx,y
ρ ). Recall now

(3) to see that a minimizer of d(·, Πx,y
ρ ) can be found by just a single

step. In this way a faster learning method than the stochastic gradient
descent approach in [3] is anticipated.

4. ONLINE CLASSIFICATION BY THE ADAPTIVE
PROJECTED SUBGRADIENT METHOD

Assume now a sequence of pairs (xn, yn)n∈Z≥0
⊂ X × Y denot-

ing the sequence of incoming data from two classes in R
m together

with their associated labels. Consider also a sequence of nonnegative
margin parameters (ρn)n∈Z≥0

. According to the discussion of the
previous section, each pair (xn, yn) and margin ρn de ne the half-
space Πn := Πxn,yn

ρn
:= {u = (f, b) ∈ H × R : yn(f(xn) + b) ≥

ρn} or in other words the set of all those classi ers in H × R that
achieve ρn for given (xn, yn) (see Fig. 1). Since we deal with a se-
quence of halfspaces (Πn)n∈Z≥0

, our objective is to nd a classi er
u∗ := (f∗, b∗) ∈ H × R that belongs to

�
n≥n0

Πn for, let’s say,
some n0 ∈ Z≥0, provided of course that the set of all such classi ers�

n≥n0
Πn is nonempty.

To tackle such problems, the Adaptive Projected Subgradient
Method (APSM) was very recently introduced in [4, 5]. The algo-
rithm solves the problem of asymptotically minimizing a sequence
of nonnegative, continuous, convex but not necessarily differentiable
functions over a closed convex set in a Hilbert space. The closed
convex set was originally handled as the xed point set of a metric
projection in [5]. This idea was very recently extended in [4] by
handling the closed convex set as the xed point set of a more gen-
eral nonexpansive mapping. By this generalization, we can solve the

II  426



problem de ned, for example, over the intersection of xed point
sets of multiple metric projections. To see the connection of asymp-
totic minimization with the present classi cation problem, recall that

nding a classi er in Πn is equivalent to minimizing d(·, Πn) which
is a nonnegative, continuous, and convex function [8]. Although
d(·, Πn) is not differentiable, it is everywhere subdifferentiable [8,
4] and its subderivatives [8] are given by means of the metric pro-
jection operator PΠn . In adaptive ltering, APSM generalizes the
classical Normalized Least Mean Squares (NLMS) and the cele-
brated Af ne Projection Algorithm (APA) [9, 4, 5]. The APSM en-
joys several remarkable theoretical properties and has been showing
low computational cost, robustness, and fast convergence for several
adaptive ltering problems [4].

The APSM allows concurrent processing of multiple data for ev-
ery time instant. That is, instead of projecting each time onto a single
halfspace, one can choose to project concurrently onto a number of
halfspaces. This speeds up convergence, and it is basically the same
idea behind APA [4, 5]. To do so, we assume for every n ∈ Z≥0

an index set Jn ⊂ Z≥0, of nite cardinality card(Jn), which deter-
mines the incoming data {(xj , yj)}j∈Jn to be processed at time n.
Since each index j ∈ Jn associates to a halfspace and to explicitly
show the dependence of the halfspaces on the index set Jn, we in-
troduce a new notation for Πn by Π

(n)
j for any j ∈ Jn and for any

n ∈ Z≥0. We can also assign weights to each one of the halfspaces
by associating to each j ∈ Jn an ω

(n)
j such that ω

(n)
j > 0, ∀j ∈ Jn,

and
�

j∈Jn
ω

(n)
j = 1, that may further improve performance.

By following similar arguments to those in [4, 5], we generate
the following algorithmic solution to the online classi cation prob-
lem: for an arbitrary initial offset b0 ∈ R, consider as an initial
classi er the point u0 := (0, b0) and generate the point sequence
∀n ∈ Z≥0 inH× R by

un+1 := un + μn

��
j∈Jn

ω
(n)
j P

Π
(n)
j

(un)− un

�
. (7)

That is, given the point un we employ a number of card(Jn) metric
projection mappings in order to obtain the next estimate un+1. The
summation term in (7) denotes the concurrent processing of the data.
Recall also that the positive weights {ω(n)

j }j∈Jn add to one and
note that the summation term in (7) is nothing but an average of the
projections onto the halfspaces {Π(n)

j }j∈Jn as can be seen also for
example in Fig. 1.

By (6), the algorithmic process (7) can be written equivalently
as follows; ∀n ∈ Z≥0,

(fn+1, bn+1) = (fn, bn)+

μn

�
j∈Jn

ω
(n)
j yj

(ρ
(n)
j − yjgn(xj))

+

1 + κ(xj , xj)
(κ(xj , ·), 1).

It can be shown that the relaxation coef cient μn ∈ [0, 2Mn] where

Mn :=

����������
���������

�
j∈Jn

ω
(n)
j
‖P

Π
(n)
j

(un)−un‖
2

‖
�

j∈Jn
ω

(n)
j

P
Π

(n)
j

(un)−un‖2

=
�

j∈Jn
ω

(n)
j

[(ρ
(n)
j
−yjgn(xj))+]2/(1+κ(xj ,xj))

�
i,j∈Jn

β
(n)
i

β
(n)
j

(1+κ(xi,xj))
,

if un /∈ 	j∈Jn
Π

(n)
j ,

1, otherwise,
(8)

and

β
(n)
j := ω

(n)
j yj

(ρ
(n)
j − yjgn(xj))

+

1 + κ(xj , xj)
, ∀j ∈ Jn, ∀n ∈ Z≥0. (9)

Notice by the convexity of ‖·‖2 and by the rst fraction in (8) that
Mn ≥ 1, ∀n ∈ Z≥0, so that the relaxation parameter μn can take
values bigger than or equal to 2. The update rules can be summarized
as follows; if we de ne α

(n)
j := μnβ

(n)
j , ∀j ∈ Jn, ∀n ∈ Z≥0, and

if we recall that f0 := 0, then ∀n ∈ Z>0,

(fn, bn) = (

n−1�
k=0

�
j∈Jk

α
(k)
j κ(xj , ·), b0 +

n−1�
k=0

�
j∈Jk

α
(k)
j ). (10)

Note that the sequence of margins (ρ
(n)
j ), j ∈ Jn, n ∈ Z≥0,

is treated as a sequence of parameters. An adaptive scheme for their
selection is given in the next section.

We stress also that due to lack of space no arguments are demon-
strated regarding the sparsi cation of the functional representation in
(10). However, any sparsi cation method like [10] can be used for
the proposed algorithm. The details are left for a future work.

5. AN ADAPTIVE SELECTION SCHEME FOR THE
MARGIN PARAMETER

The selection schemes for the margin parameters are designer de-
pendent. Here we give an example.

Assume a margin r ≥ 0 and consider by (5) the set Πx,y
r of all

those classi ers that achieve r for some (x, y) ∈ X ×Y . Notice that
for any γ ≥ 1 and for a margin ρ := γr we have Πx,y

ρ ⊂ Πx,y
r . This

means that if we project onto Πx,y
ρ by the mapping PΠ

x,y
ρ

not only
we obtain a classi er of Πx,y

r but we also move deeper into Πx,y
r

(see Fig. 1).
Consider for simplicity that ρ

(n)
j := ρn, ∀j ∈ Jn, ∀n ∈ Z≥0,

i.e., all the halfspaces processed at time n assume the same margin
ρn ≥ 0. If rn ≥ 0 is a margin we want to achieve, by setting
ρn := γrn for some γ ≥ 1 and by the argument just stated above,
the average mapping

�
j∈Jn

ω
(n)
j P

Π
xj,yj
ρn

appearing in (7) will take

us closer to
	

j∈Jn
Π

xj ,yj
rn 
= ∅ than

�
j∈Jn

ω
(n)
j P

Π
xj,yj
rn

. For an
illustration of this refer again to Fig. 1.

The initial value r0 is arbitrarily chosen, so we let it r0 := 1
here. The strategy for choosing rn is given in Table 1. Let us give
now a way to select (ρn)n∈Z≥0

. The parameters (ρn)n∈Z≥0
, that

determine the halfspaces to be used by the APSM in (7), are de-
ned as γ(≥ 1) multiples of (rn)n∈Z≥0

due to the arguments just
stated above and illustrated in Fig. 1. The basic idea for the selection
scheme is as follows. If our current estimate un achieves the mar-
gin rn, we assume that most likely our next estimate un+1 will also
do so such that we can change the parameter ρn to a slightly big-
ger value ρn+1. On the contrary, if the current classi er un does
not achieve rn, we assume that a small decrease of ρn to ρn+1

will increase the probability for the next estimate un+1 to achieve
rn+1 := rn. This idea shares the same rationale with the scheme
in [3, (19)] for the adaptation of the margin. For the present design,
the variations of the parameters (ρn)n∈Z≥0

will be governed by the
linear parametric model ν(θ−γr)+γr, where θ ∈ R is a parameter
and ν is a suf ciently small positive slope. In this way, an increase
of θ will increase ρ, whereas a decrease of θ will force ρ to take
smaller values.

For completeness, we present the selection scheme in Table 1. A
quantity that checks whether the desired margin rn is reached at time
n for all (xj , yj), j ∈ Jn, is max{(rn − yjgn(xj))

+ : j ∈ Jn}.
Indeed, if this is equal to 0, then by (6) we achieve rn since we
reached a point in

	
j∈Jn

Π
xj ,yj
rn 
= ∅.

6. NUMERICAL EXAMPLE
Following [3], we generated data by mixing two 2-dimensional Gaus-
sian distributions with means μ11 := [0, 3]t, μ12 := [1, 3]t, covari-
ance matrices Σ11 := [ 5 2.5

2.5 5 ], Σ12 :=



5 −1.5
−1.5 5

�
, and equal
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1: De ne r0 ≥ 0, γ ≥ 1, ρ0 := γr0, θ0 := γr0,
δθ > 0, ν ≥ 0, NumFeas := NumInfeas := 0,
FloorFeas,FloorInFeas ∈ Z>0, n = 0.

2: loop
3: ifmax{(rn − yjgn(xj))

+ : j ∈ Jn} = 0 then
4: NumFeas := NumFeas+ 1.
5: NumInfeas := 0.
6: ρn+1 := (ν(θn + δθ − γrn) + γrn)+.
7: θn+1 := θn + δθ.
8: rn+1 := rn.
9: if NumFeas ≥ FloorFeas then

10: rn+1 := 2rn.
11: θn+1 := ρn+1 := γrn+1.
12: NumFeas := 0.
13: end if
14: else
15: NumInfeas := NumInfeas+ 1.
16: NumFeas := 0.
17: ρn+1 := (ν(θn − δθ − γrn) + γrn)+.
18: θn+1 := θn − δθ.
19: rn+1 := rn.
20: if NumInfeas ≥ FloorInfeas then
21: rn+1 := rn/2.
22: θn+1 := ρn+1 := γrn+1.
23: NumInfeas := 0.
24: end if
25: end if
26: n := n + 1.
27: end loop
Table 1. The iterative process that selects the margin parameters.

weights of 0.5 for the rst class, and two 2-dimensional Gaussian
distributions with means μ21 := [0,−3]t, μ22 := [1,−3]t, covari-
ance matrices Σ21 :=

�
5 −2.5

−2.5 5

�
, Σ22 := [ 5 0

0 5 ], and again equal
weights of 0.5 for the second class. For the classi cation task we
used a Gaussian kernel with σ2 := 0.1.

We compared the proposed method with the stochastic gradi-
ent descent algorithm NORMA of [3]. We utilized the version of
NORMA with the ν-trick appearing in [3, (19)] for a slope of ν :=
0.01. The learning rate was set equal to 0.9/

√
n, ∀n ∈ Z≥0.

Since the NORMA method generalizes the kernel perceptron, we
also simulated the perceptron method with the same learning rate as
in NORMA. Both of these methods were optimized with respect to
the data at hand. The best results for NORMA were produced here
without any regularization [3].

The label APSM refers to the proposed method of (7) with the
index set Jn := {n}, ∀n ∈ Z≥0. The relaxation parameter μn :=
1, ∀n ∈ Z≥0. In this way, the computational cost of APSM is the
same as NORMA of [3] and kernel perceptron.

To show the bene ts of concurrent processing, we let also APSM
with Jn := {n, n + 1, n + 2, n + 3}, ∀n ∈ Z≥0, in (7). The
weights in (7) are set to ω

(n)
j := 1/4, ∀j ∈ Jn, ∀n ∈ Z≥0.

We also let the relaxation parameter μn := 1.9Mn, ∀n ∈ Z≥0.
This version of APSM increases the computational cost due to the
calculation of Mn and due to the increased cardinality of the in-
dex set. However, the order of complexity remains the same as
that of the simple case of APSM. The associated curve for this ver-
sion of APSM is APSM(4) in Fig. 2. We initialized the process of
Table 1 as follows: r0 := 1, γ := 3, δθ := 10−2, ν := 0.1,
FloorFeas := FloorInfeas := 30.

For better visualization results we produce smooth curves in
Fig. 2 by plotting the accumulated misclassi cation errors versus
the time index. First, by misclassi cation errors we de ne the errors
resulting by the classi er obtained at iteration n with respect to all
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Fig. 2. The accumulated misclassi cation errors versus time. The
number of errors at time n is given by the slope of the curve.

the data collected till n. By the term accumulated misclassi cation
errors we mean that each point in Fig. 2 at time n equals the value of
the point at n− 1 plus the errors occurred at time n. In other words,
the misclassi cation errors at time n are given by the slope of the
curves in Fig. 2. We let a total number of 500 data samples, conduct
100 experiments and uniformly average the results.

For example, after 450 data samples, the average missclasi ca-
tion errors are 30.7 for the kernel perceptron, 20.9 for NORMA,
12.7 for APSM, and 4.4 for APSM(4).
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