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ABSTRACT 

 
Noise-resistance capability is a very important issue to 
signal processing systems as well as machine learning 
applications. In this work, we present a new kernel that is 
highly robust against outliers and random noises. By 
incorporating a robust -function into the distance metric, 
the derived robust kernel was shown to be very insensitive 
to the influence of outlier elements. In the experiments, we 
show that the proposed kernel brought significant 
improvement to the Support Vector Machines (SVM) 
classifier in face recognition accuracy and outperformed 
several traditional kernels for corrupted data. We also 
applied our kernel to the kernel Principal Component 
Analysis (PCA) and evaluate the efficiency in recovering 
contaminated face images. Experiments show our robust 
kernel also brings benefits in noise-reduction applications.  
 

Index Terms— Kernels, robustness, SVM, PCA 
 

1. INTRODUCTION 
 
Kernel methods are known to represent complex (nonlinear) 
relationships in the feature space, and have been employed 
to provide linear strategies with non-linear capabilities by 
computing data similarities in a more representative feature 
space [1]. Researchers have developed new kernels that are 
dedicated to specific applications, such as the string kernels 
for text categorization [2], or the pyramid kernel for image 
classification [3]. Yet, since most of learning strategies are 
to synthesize solutions from given training examples, they 
suffer drawbacks to be sensitive to the corrupted data, either 
in training or testing. Taking face recognition for example, 
facial images are often corrupted by the low-quality image 
acquisition equipments with various kinds of noise involved. 
In the meantime, corrupted face images are very possible to 
become the critical instances during the training procedure, 
so they are usually very difficult to be correctly classified. In 
this work, motivated by the robust error function used in 
robust statistics, we developed a new kernel which is very 
robust to resist different high-level noise corruption in data. 
Briefly, our proposed kernel is a weighted linear 
combination of two functions: one is a robust -function 

borrowed from robust statistics and the other is the Radial 
Basis Function (RBF) kernel function. The proposed kernel 
is shown to satisfy the Mercer’s condition. Being a kernel, it 
can be used in conjunction with several kinds of linear 
learning strategies and provides them with the nonlinear 
abilities, including SVM, PCA, as well as Linear 
Discriminant Analysis (LDA).  

The rest of this paper is organized as follows: First we 
briefly reviewed the backgrounds of kernel tricks in section 
2. Subsequently, section 3 provides a detailed description of 
the proposed robust kernel based on a robust error function. 
Some experimental results on face recognition from noisy 
images are shown in section 4 to give a significant 
improvement of robustness against different types of noises 
by using our kernel. In addition, we also show the results of 
applying this robust kernel to the kernel PCA for image 
noise reduction. Finally, we conclude this paper with some 
remarks and discussions in section 5. 
 

2. BACKGROUND OF KERNELS 
 
The limited power of linear learning machines was pointed 
out in 1960s [4]. In the real applications, we are frequently 
not able to directly express the target function simply by a 
linear combination of the given attributes. A common 
strategy in machine learning society is to change the data 
representation by  

( )1 2 1 2( , ,..., ) ( ) ( ), ( ),..., ( )d nx x x= Φ = Φ Φ Φx x x x x .      (1) 
Kernel-based learning algorithms are based on the idea of 
projecting the feature vector x from the original space 

dR⊆Χ  to a Reproducing Kernel Hilbert Space (RKHS) H. 
The computational power of linear learning machines is thus 
increased with computing linear relationships in the 
projected, much higher dimensional feature space. Having 
the mapping function Φ , data point x is embedded into H 
with the mapping )(xΦ  Therefore, we can measure the data 
similarity with the kernel function ( , ') ( ), ( ')K = Φ Φx x x x , 

where RXXK →×: . Mercer’s theorem provides the 
characterization that K is a kernel, if and only if the Gram 
matrix  
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( , )ij i jK K= x x is non-negative. Note that the linear 
learning machines, such as PCA and LDA, can be included 
into H since the associated feature vectors can be computed 
with inner products. The most well-known example that the 
kernel tricks are employed in conjunction with linear 
strategies is SVM. By looking for the optimal separating 
hyperplane (OSH) in kernel space, SVM obtains the 
maximal generalization capability and achieves many 
successful results in different fields.  

 
3. PROPOSED ROBUST KERNEL 

 
We describe the details of the proposed robust kernel in this 
section. For a given RBF kernel function f  and a set of 
training data 1 1 2 2{( , ), ( , ),..., ( , )} ( )l

l lS y y y X Y= ⊆ ×x x x , we 
can define a Gram matrix K given by : ( ( , ))ij i jK f d= x x , 
where d is a metric on X. The above kernel function is well-
known since it forms the core of a radial basis function 
network. A popular example is the RBF kernel with the 
metric defined by the inner product 

( , ) ,i j i j i j i jd = − = − −x x x x x x x x  together with the 

exponential function f , i.e. ( )22
2exp σjiijK xx −−= . Given 

the assumption that none of all pairs of two training sample 

ix  and jx  are the same, the RBF kernel can span an 

infinite dimensional feature space H since there is no 
restriction on the total number of training samples. In other 
words, the hypothesis space function class F has an infinite 
VC dimension. Also, since the Gram matrix K is of full rank 
and every mapped vector ( )iΦ x in H is linearly 
independent with the other mapped feature vectors [5], it 
turns out that this kind of kernel is very sensitive to the 
high-level noise corruption in the data. In Figure 1, seeing 
that the sum of squared differences in RBF function is 
strongly influenced by large differences between 
corresponding feature vector components, therefore outliers 
or large noises can easily dominate the kernel function value 
evaluation. To alleviate the influence, researchers in robust 
statistics proposed to replace the square error function by a 
robust -function, which is more tolerant to the outlier and 
noise in the data. This concept inspires our development of 
robust kernel based on the robust -function [6], which 
makes the influence of outlier elements saturated. Figure 1 
depicts the square error function and the Geman-McClure -
function [6]. The proposed robust kernel function is given 
by the following equation:   

0( , ) : ( , ) ( , )robust i j i j i jK K Kρ α= +x x x x x x ,                  (2) 
where  
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Figure 1: (a) The squared error function and (b) the robust 
Geman-McClure error function [6]. 
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Figure 2: Some example of noise-corrupted face images used 
in our experiments. M and V stand for mean and variance, 
respectively. 
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Here, m is the dimension of the feature vector and α is a 
weighting parameter to compromise between the two 
functions ρK  and 0K . Note that ρK  is derived from the 
robust -function to achieve robust comparison between 
feature components and 0K  is the Gaussian RBF kernel 
included to make the composite function satisfy Mercer's 
condition. The mixture weight α  between these ρK  and 

0K  is selected to satisfy the Mercer's condition; let the 

minimal eigenvalues for the Gram matrices ρK  and 0K  be 

denoted by )(min ρλ K  and )( 0min Kλ , respectively. Then, 

the minimal eigenvalue of robustK  is bounded by: 

)()()( 0minminmin KKKrobust αλλλ ρ +≥ .            (5) 

Figure 3: Face recognition accuracy by using (a-c) C-SVM and (d-f) -SVM with various types of kernels under different level noises.  

(d) -SVM, additive Gaussian noises (e) -SVM, additive salt and pepper noises (f) -SVM, multiplicative speckle noises 

Figure 4: Kernel PCA noise reduction with our robust kernel. The 1st, 3rd and 5th rows are samples contaminated by Gaussian 
noise with variance ranging from 0.001 to 0.010, while the 2nd, 4th and 6th rows are the recovered images after kernel PCA. 

(b) C-SVM, additive salt and pepper noises (c) C-SVM, multiplicative speckle noises (a) C-SVM, additive Gaussian noises 
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Since the Gram matrix for the Gaussian RBF kernel is 
positive-definite, we have 0)( 0min >Kλ . By setting α  to 

be )()( 0minmin KK λλ ρ− , we can assure robustK  to be 
non-negative and satisfy the Mercer's condition.  
 

4. EXPERIMENTAL RESULTS 
 
4.1. Face recognition with SVM 
 
To validate the noise-resistance capability of the proposed 
kernel, in the experiments, we simulated several types of 
noises on face images and evaluated the face recognition 
accuracy. The performance of the proposed robust kernel is 
compared with several types of traditional kernels by using 
SVM as the classifier. The applied noise types are additive 
Gaussian noise, additive salt and pepper noise, and the 
multiplicative speckle noise. For the Gaussian noise, the 
original face image I was perturbed by ),0(' vNII +=  where 
N is a normal distribution random variable with zero mean 
and variance v. The variance is ranged from [0, 0.25] in the 
experiments. For the case of salt and pepper noise, on and 
off pixels were randomly added into the original image I 
with density d sampled between [0, 0.98]. Next face images 
are corrupted by speckle multiplicative noises 
by InII ×+=' , where n is a uniform distributed random 
variable with zero mean and variance [0, 0.98]. Pixels here 
were scaled into [0, 1]; noise corruptions are applied to both 
training and testing images. Some examples of the noise-
corrupted face images of different noise levels are shown in 
Figure 2.  
The results of face recognition accuracy by using SVM 
classifier together with various kernels are shown in Figure 
3. Note that there are totally 20 categories (persons) in the 
face database with 6 instances each category. In the figures, 
we experimented on two forms of SVM classifiers, i.e. C-
SVM and -SVM, in conjunction with several kernels, 
including the proposed robust kernel and some standard 
kernels, for face recognition. The label linear denotes SVM 
classifier with linear kernel is used, poly d=n stand for the 
polynomial kernel with degree n, RBF denotes the Gaussian 
RBF kernel, while Mixture denotes our proposed robust 
kernel respectively. None of instances of test face images 
ever present in the training set. We also notice that the 
weighting coefficient  is mostly extremely small, which 
implies the second part of 0K  is insignificant. In the 
experiments our proposed robust kernel always provides the 
best face recognition accuracy compared to other traditional 
kernels in both C-SVM and -SVM classifiers. 
 
4.2. Noise-reduction 
 
The basic idea of kernel PCA is to nonlinearly map the data 
into the RKHS F and then perform linear PCA in F; it is 

equivalent to doing nonlinear PCA in the original input 
space. Here, we applied our robust kernel to kernel PCA for 
the image-denoising problem. Some related works can be 
found in [7]. In this experiment, we used facial images of 67 
persons with 3 different illuminations, taken from CMUPIE 
database. Due to the memory limitation in computing kernel 
matrix, images were normalized to 32 x 32. In addition to 
the original illumination changes, in the experiments, we 
further added random Gaussian noises with variance [0.001-
0.010] to the face images; and there are totally 2010 faces 
with kernel size 2010 x 2010. By solving the pre-image 
problem [7], the contaminated face images were recovered 
with better quality. We demonstrated some resulting images 
in Figure 4, and we can see the images after our kernel PCA 
noise reduction are much clearer, which means our kernel is 
quite insensitive to noise effects.  
 

5. CONCLUSIONS 
 
In this paper, we developed a new and robust kernel. The 
proposed robust kernel function is based on using the robust 
-function to alleviate the influence of outliers and high 

noises. For face recognition applications, the proposed 
robust kernel provided much more accurate recognition 
results compared to other traditional kernels in conjunction 
with the SVM classifier under very noisy environment. For 
image-denoising problem, by applying our noise-insensitive 
robust kernel to the kernel PCA, we can recover more clear 
images from noisy face images. In the future, it would be 
interesting to further investigate the applications of the 
proposed robust kernel on other problems under different 
noisy environments, especially to incorporate it with other 
learning algorithms. 
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