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ABSTRACT

Algorithms involved in applications such as speaker recognition or
image classification need to be able to process data which are sets
of vectors with variable size. As opposed to the standard setting
for kernel methods, where the data are individual vectors, it is diffi-
cult to build a reliable reproducing kernel between such sets of un-
ordered vectors. Most effective techniques rely on the design of ker-
nel calculated on densities estimated independently on each set of
vectors; however, this calculation can be numerically tricky: there-
fore these techniques either use poor estimates such as histograms,
or assume unjustified restrictive conditions. In this paper, we im-
prove on the existing framework and design kernels between den-
sities, where these are estimated using an effective nonparametric
technique, namely the Akaike-Parzen-Rosenblatt (APR) estimate.
Closed-form expressions are obtained for positive definite kernels,
and simulation results illustrate the soundness of the approach.

Index Terms— Kernel-based algorithm, density estimation, non-
stationary signal classification

1. INTRODUCTION

Various practical situations involve the comparison of two sets of
vectors. Important examples are, among others, speaker recognition
where one speaker can be represented by a set of vectors in the 20-
30 dimensional space of cepstral coefficients, or image processing
where the number of texture features and interest points may vary
from one object to another. More generally, the design of learn-
ing algorithms for classification, recognition, anomaly detection, is
made possible by the ability to compare two sets (of vectors) with
variable size, as occurs naturally with such representations as the
bag-of-pixels in image processing or the bag-of-words in text pro-
cessing.

A first possible approach consists of comparing each vector in
one set to each vector in the other set using a pairwise similarity mea-
sure, such as the kernels used in reproducing kernel Hilbert space
(RKHS) methods. A second possible approach considers each of the
two sets of vectors as a single data object, and a higher level kernel
is designed to compare these two objects. In the first situation, the
similarity between the two sets is summarized in the kernel matrix;
in the second, the similarity is summarized by a single value, which
is required in many applications. In this paper, we propose a family
of such kernels.

We now introduce some assumptions and notations. All vectors
are assumed to lie in X C RP as in previous works in the same vein.
The cardinality of the two sets may not be the same. In the following,
we denote by ¢ = {z1,...2,} withsizenand ' = {z},... 2./}
with size n’ the two sets to be compared. We propose an original
methodology to design a (reproducing) kernel between x and x’,
denoted k(x, z"). Such a kernel can be used in any RKHS method.
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Table 1: Examples of (reproducing) kernels &(+, -) between two densities.

[ Kernels [ Definitions |
Entropy [3] exp (7}1 (ftf,) + M) with h(f) =
-/ v f1 Inf

Inverse generalized variance [3 _

i Bl Gw (=

7

Symmetric-x? [1] ffjf’
Hellinger [1] / fr
Jensen-Shannon [1] - (flog fff, + f'log fff,)
Expected likelihood [2] / ff
Total variation [1] /min(f, )
L, Exponentiated /cxp(fﬂf — I /he)

1.1. Related work

Considering a set of vectors as a single object is a common idea in
learning problems. Standard approaches consist of choosing heuris-
tically a representative for the set, e.g., its barycenter, the vector
closest to the barycenter, or by fitting some parametric probability
density function (pdf) model. Then, the two sets are compared with
a norm or a distance in the space of parameters.

It is often the case, however, that no model nor simple pdf can
represent the data well enough. Other existing solutions then consist
of building the kernel from standard similarity measures between
pdfs estimated using histograms: this is the approach followed in [1],
where the positive definiteness of several kernels based on classical
metrics (symmetric-x?, Jensen, total variation, etc.) is established.
The Bhattacharrya kernel was already proposed in [2], though in a
less general framework. Instead of comparing the densities, one can
compare the probability measures: when these overlap, their sum is
expected to be more concentrated. [3] defines semi-group kernels
and prove the positive definiteness of kernels based on entropy and
on inverse generalized variance. Table 1 summarizes all these ker-
nels.

Histograms are known to provide poor density estimates, but
computing a similarity measure between more complex estimates
is often both costly and numerically unstable. Hence authors re-
sort to approximations, some of which assume Gaussianity in fea-
ture space [2], or work within a tractable family of pdfs such as
the exponential family [3]. The approach then steps back to the
simpler estimation of a small number of parameters, generally the
mean and variance. Aside these approaches, one may quote [4], that
uses the structure of the statistical manifold to build a diffusion ker-
nel. However, though developed in a theoretically sound and elegant
framework, its positive definiteness is not established. Similarly, the
Kullback-Leibler kernel derived in [5] is not positive-definite. The
kernel in [6] is defined as a product of cosines, and is known to scale
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poorly with the number of learning vectors.
1.2. Contributions

We follow the approach of [1] as a starting point. We propose to
use a more reliable nonparametric density estimate than a histogram,
namely the Akaike-Parzen-Rosenblatt (APR) estimate [7]. The main
advantage of this estimate is that its convergence rate is much faster
than that of histograms. However, our approach is feasible only if it
leads to a computationally tractable solution. We show how to build
kernels between APR estimates that are both positive definite and in-
deed computationally tractable. Our approach is theoretically sound
as no unnecessary restrictive assumption is made over the data, it is
computationally tractable as no optimization is required to evaluate
the kernel, and it admits simple yet efficient model selection rules.
Most of all, it is not limited to small size sets, as is the case with
other approaches.

1.3. Paper organization

The remainder of this paper is organized as follows. We describe
and justify our approach in Section 2. We also introduce our kernels
between sets of vectors K (x, z'), and their closed-form expressions
are given as functions of the parameters of the APR estimate. In
Section 3, we demonstrate these kernels in the problem of classi-
fying nonstationary signals; simulation results are also presented for
manifold-inspired learning applied to handwritten digits recognition.
Conclusions and perspectives for future work are provided in Sec-
tion 5.

2. COMPUTING KERNELS BETWEEN APR ESTIMATES

Assume that the learning vectors xz;’s (for ¢ = 1,...,n) are dis-
tributed according to some unknown continuous probability density
function (pdf) f. We restrict the presentation to so-called translation
invariant/spherical kernels and use the notation [(z, ') = [ (r) /h?
with r = ||z — @'||/h when appropriate (h is the kernel bandwidth).
Given a kernel T( ), the APR density estimator of f is given by:
Fal@) = 1/(nhl) S0 (2 — 23) /hn)-

The fundamental result in APR density estimation is that pro-
vided 1 is normalized, that is, f 1= 1, and L:-integrable, that is,
J | < oo, necessary and sufficient conditions for consistency of
the estimate are h,, — 0 and nhf, — oo, where we recall that p
is the dimension of X. Remarkably, no additional condition needs
to be imposed on the kernel: the APR estimate based on any nor-
malized L integrable kernel is consistent. In practice, we use the
o(nlogn) dual-tree implementation of [8] to achieve fast yet robust
model selection and fast evaluations.

2.1. Example kernels

We now introduce two example APR-based kernels on sets: the ex-
pected likelihood kernel (first proposed in [2] along with the Gaus-
sian assumption in ), and the exponentiated Lo kernel. We then
show how to compute these kernels in a simple and efficient way.

2.1.1. Expected likelihood kernel

Given two estimates f,(z) and f',, (:p), obtained by independent
APR estimations onto the sets and :c the expected lzkelihood ker-
nel is defined as k(z,z’) = Es ()], where

E; [ } denotes expectation w.r.t. the den51ty f. Usmg the expression
of the APR estlmate with kernel () ylelds

b, 2) = — le(,w»Lz:

Z Le(@i, ) (D)

le

with I'(z,2') = ,L}J(z;,l" ), with (-, -) 1, (x) the inner product on
the space of square-integrable functions on &', and where /. results

from the convolution of [ with I": . = [ *['.

2.1.2. Exponentiated Lo kernel

The exponentiated Ly kernel is: exp [—||fn — 1%, /hk] where
hy, is the kernel bandwidth parameter and || - || ., is the norm induced
by the inner product (-, -)1,. The evaluation of k2(:, -) requires the
A’;, H2L2 which equals:

ZZl (i, 75+ 1221 (af,25) @

1=1j=1

calculation of || f,, —
1 n
ﬁ Z Ly (x’iv ZE]')
0.

2.2. Positive definiteness

It is straightforward to prove that the kernels defined above are pos-
itive definite, by embedding the set of densities in L2 (X'), in which
case they are respectively the linear and Gaussian kernels over Lo (X).
It is both more interesting and more formal to see that these two ker-
nels coincide with kernels defined directly between the sets & and
x’ as we now prove. The connection is inspired by the material
in [9, Chapter 4] from which the below construction is taken; to sim-
plify the exposition, we assume that [ = I’ and that they are positive
definite though both these assumptions are not required for the con-
nection to hold.

Let H be a RKHS with kernel I*. First step is to embed the space
of signed measures M (X) in H:

RP x ...RP N V10: L JEAN H
n
z={z1,...,xn} +— % > Oz, —  representer of yu,, in H
~

where the operator I'¢.y acts on p € M(X) as follows: I'y, =
J 1" (x, -)dp(z), which leads us to define an inner product on M (X')
as: (i, V) m = (T, T'w)n. Then, plugging Eq. (??) in the expres-
sion of the inner product yields:

meﬁ = fl*(fm Jau(x), [ 1*(y, )dv(y))»
ST @), 1 (y, D mdp()dv(y) = [ 1*d(p+v)

Now, the measure we want to embed in H are the empirical measures
on z and =’. Applying Eq. (2.2) to pu = &, v = &y yields:

(Go 6, )0 = //l*d(ém £6,) = 1" (z,9)

(s V) m

therefore the inner product between the empirical measures on
i " U (zi,2). Choosing I" = 1 * kl'(= 1)

i=1
establishes the connection for the kernel &k, which proves that it is a

positive definite kernel between sets.

Similar reasoning obviously holds for the exponentiated Lo ker-
nel, and more generally for positive definite spherical kernels ex-
pressing as g(—||fn — fn, ||z,) with g a function respecting e.g.
Schoenberg condition (g is infinitely differentiable and such that
(—l)i% > 0, for any integer i > 0) or Bochner condition (g
is the inverse Fourier transform of a positive finite Borel measure).

We now focus on the calculation of /., which is the keystone of
both kernels computation.

2.3. Kernel convolutions

We propose different approaches to calculate /... To start with, we
consider the simplest case, where the APR estimate relies on the
Gaussian kernel.

Gaussian kernel: As the convolution of a Gaussian kernel with
itself yields a Gaussian kernel, in this case /. is easy to compute,
whatever the dimension p.
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General spherical kernels: For more general cases, the kernel
convolution can be computed efficiently for a number of translation

invariant kernels (e.g., the trapezoidal kernel:
First, following [10], we note that
() -

where F (resp. F ~1Y is the Fourier transform (resp. inverse Fourier
transform) and with ¢ the Fourier transform of {. This approach is
computationally affordable as [ is spherical: the complexity of the
FFT is O(nlogn). As an example, we provide the expression of
li(mi, zj):

Ul =71 (FA+D) = F~ Fle?) 0

L@, z5) = / L (@/h) 80y —ayy (@) = L (-/h) % 8(p,—a y () @)

Applying the Fourier transform yields:

F (@i 2;)) (u) = hh'(uh)p(uh’) exp (ju(zi —2;)  (5)
with ¢ the Fourier transform of I and j> = —1. Finally the inverse
Fourier transform of Eq. (5) yields I(zi,z;). More efficiently, the
sum = "y b (zi, ;) itself is computed by replacing 6., ) ()
by 2 o ijl 5(%‘7%)(’) in the last line of Eq. (4). We refer to [10]
for technical details concerning the implementation of this approach,
including dealing with boundary effects.

2.4. Kernel between APR estimates

In this Section we deal with choices for g. Due to the introduction of
the Fourier transform ¢ of the kernel, it is natural to define the ker-
nel directly by its Fourier transform. This proves to be specifically
interesting for model selection purposes; it is common in the RKHS
learning literature to require that the kernel is parameterized by a
small number of parameters, typically 2 at most, so that splitting
techniques (cross-validation) are computationally affordable when
solving a learning problem. In our case, we can define hierarchies
of kernels {ks (-, ); (s, h)} indexed over the kernel bandwidth h and
its order s. We recall that the s™-moment of a kernel, s > 2,1s
its first nonzero moment; s is related to the smoothness of the ker-
nel, hence of the regressor based on k; for further details, we refer
to [11]. Due to Bochner theorem, constraining kernels in the hierar-
chy to be positive definite is simple, as one just needs to check that
the ,’s are nonnegative. Two examples of hierarchies of kernels are
the Hall-Marron class: ¢s(-) = exp(—(+)®), or its modification as
the Devroye-Lugosi class: ¢s(-) = 2 (1 — () exp (—3())°) —
(1= () exp (=(-)7).

Another possible approach is to define higher-order kernels re-
cursively, from an initial kernel ks, generally for so = 2. A useful
recursive formula may be found in the density estimation literature:
if the order of the kernels &k, and k- Tespectively is s and s’, then
the order of k., defined as ko = ks + kg — ks % ky is (s+ ).
A simple study yields the following sufficient conditions for positive
definiteness:

Proposition 2.1 Assume that ks is positive deﬁmte and s.t. ks inte-
grates to 1. Then kss s.t. k3s —3k —3k *k +k *k *k is
p.d.; if s < 2 then kas s.t. kgs —Qk fk *k is p.d.

A hierarchy of kernels may be induced from e.g. the Gaussian kernel
(in the space domain this time) and an optimal couple (s, h) may be
chosen by any splitting or resampling technique.

Tcos(lri—8 cos®(Irl)

3. APPLICATION TO CLASSIFICATION
3.1. Unordered sets classification by Support Vector Machines

Let S denote the set of sets of vectors in X. Let {z1,...,xzn} bea
set in S, that is a collection of sets of vectors in A’; to each set x;,
there corresponds a label y;, chosen in a finite set of labels ). The
objective of classification is to estimate a function f : S — ) such
that f(x) = y for any set @, with y its true label. We concentrate
here on the 2-class problem: y = =41, and the decision function is
expressed with no loss of generality as sign(f(-)). Support Vector
Machines (SVMs) for classification [12] solve this problem by mini-
mizing a regularized risk, which trades fit to the data (in terms of the
L1 norm — the hinge loss) for complexity of f, chosen in a RKHS.

3.2. Nonstationary signal classification

Nonstationary signal classification consists of classifying time series
according to their time-varying frequency contents using either time-
frequency or time-scale representations. Here, we follow a time-
frequency approach. The Time-Frequency Representations (TFRs)
we considered are derived from the Wigner-Ville representation
Wit6) = [ s+ Dyste- Dyt ©®
oo 2 2
where s(t) is a given time series (¢ denotes continuous time). A
given TFR is computed from W;(¢,£) by a 2-D convolution with
a time-frequency kernel ¢(t,&). In particular, the smoothed pseudo
Wigner-Ville representation is obtained by using ¢(¢, &) = h(t)g(&),
where h (resp. g) is a time (resp. frequency) smoothing window. In
practice, discretized versions of these continuous TFRs are used.

In order to enable comparison with alternative approaches, we
consider the problem described in [13] and references therein. The
learning set is composed of signals x(¢) which are the sum of two
components, each being a sine wave with linear frequency modula-
tion (linear chirp):

s(t) = Asin [2m(ag + b1t)] + Bsin [27(bo + b1t + bat?)] +£(t) (7)

fort = 0,...,T — 1, where the noise samples £(t) are distributed
iid. according to N'(0,02). The parameters for the signals are
{ao, a1,bo,b1,b2, A, B,o.}; both classes share the same parame-
ters: A = B = 1, ap,bo ~ U(0,1), a1 = 0.25, by = 0.40 and
o2 = 2, except for ba: by ~ U (—0.30/2(T — 1), —0.20/2(T — 1))
for class 1 and b2 ~ U (—0.15/2(T — 1), —0.05/2(T — 1)) for
class 2. Fig. 1 plots the idealized TFRs of signals from the two
classef™™

0.25

020 ‘ Approach Error
(%)
o.10 Wigner distribution 2230
MCMC classification (¥*) | 5.24
Time Ambiguity plane (*) 4.56
Frequency Time-Frequency (*) 2.25
SVM Tinear (%) 198
0.40 035 SVM Gaussian (*) 1.40
: SVM APR kernel 1.40
025 025

Time

Fig. 1: Idealized time-frequency representations of the two classes of signal
to be classified. The decreasing chirp may be anywhere in the blue triangle,
and the two classes differ by the end frequency of this chirp (left). Classifi-
cation results (error rates) for the nonstationary signal classification problem.
Several previous approaches are compared to that developed in this paper,
see [13] for details. (*): Approaches which optimize the TFR of the signals
(much more costly from the computational perspective) (right).
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We adopt the following approach: the signals to be classified
are first mapped to the Time-Frequency domain using the smoothed
pseudo Wigner-Ville representation. As opposed to state-of-the-art
methods in the field, here we do not optimize the time-frequency
kernel: this saves a lot of computations. Binarization is then applied
to the TFRs. Coefficients with low amplitude are set to zero (they
correspond to noise only) while high amplitude coefficients are set to
one (they correspond to signal). In our experiments, threshold was
chosen a priori and set to the value 25% of the peak amplitude in
the TFR. This thresholding operations yields a sparse (, £)-image.
Each image is thus converted to a set of vectors, each vector being
composed of the ¢ and & coordinates of a non-zero pixel.

The kernel for the APR estimate is a Gaussian kernel with band-
width 0.466,n /3 (this value was obtained by cross-validating a
set of values picked uniformly around Deheuvels rule-of-thumb band-
width value). A 2-class C-SVM is then trained with the exponenti-
ated Lo kernel and with cross-validation based model selection rules
leading to the parameter hy, = 1073, Classification of a test sets
of signals generated according to the model defined in Eq. (7) led
to an error rate of 1.4%, which compares favorably with state-of-
the-art approaches (See table in Fig 1). It should be noted that most
state-of-the art methods require optimization of the time-frequency
kernel ¢(t, &), which requires much heavier computations than the
implementation proposed here.

4. APPLICATION 2: MANIFOLD-INSPIRED LEARNING
4.1. Manifold-inspired learning

Manifold learning methods assume that the Euclidean distance may
not be the most relevant way of comparing the data. Instead, learn-
ing is performed on a(n estimated) manifold of X where the data lies.
Such methods include spectral clustering, and other nonlinear gen-
eralization of the Principal Component Analysis (PCA) such as the
Locally Linear Embedding (LLE), ISOmetric feature MAPping [14]
and Kernel Principal Component Analysis [12]. In this Section we
focus on a smoothed version of KPCA performed on objects which
are sets, and we compare it to the traditional ISOMAP algorithm on
a standard dataset.

It is possible to define a smoothed extension of KPCA by solving

the following optimization problem: n
aomin S k(@) = 3 agk(@y, i+ 83 ledl @)
T =T =1 j=1 i=1

with H a RKHS with kernel k and 3 > 0 a regularization param-
eter which can be optimally tuned with a sampling technique such
as cross-validation (see, e.g., [15]). The problem defined in Eq. (8)
admits many solutions (up to » when k is nonsingular). It can be
proved that this problem resort to the generalized eigenvalue prob-
lem consisting in diagonalizing (k., + (3I,), where the kernel matrix
kn = [k(xi, )]s, j=1,...,n is calculated on the x;’s and with I, the
n-dimension identity matrix. Each vector [a1,. .., a,,] represents
an empirical estimate of a principal curve for the data {x1, ..., 2, },
and all directions are ordered starting with the largest eigenvalue.

4.2. Manifold learning for handwritten digits recognition

We illustrate the smoothed KPCA algorithm on unordered sets of
vectors by performing dimensionality reduction on 500 2’s of the
MNIST handwritten digits database, as was done in [14]. Each data
is an image with size 28 x 28 pixels. Each pixel is quantified to be ei-
ther white or black. Here, the unordered sets of vectors are composed
of 2-D vectors, where each vector contains the x and y coordinate
of black pixels in the 28 x 28 image. Hence, each image is repre-
sented by a set of vectors, which cardinality varies from one image
to another. In Fig. 2, we compare the variance residuals obtained

for our approach to those obtained with an implementation of the
ISOMAP algorithm using 7 neighbors and the L2-distance (no no-
ticeable change was obtained with other distances). As it takes into
account the structure of the image, our approach is able to recover a
structure with lower dimension that the ISOMAP based on the vec-
torization of the image. The elbow corresponding to the dimension-
ality is more identifiable. and the residnal variance converges faster
to 0.

Residual variance

4
Dimensionality

Fig. 2: Residual variance for ISOMAP (full line) and a smoothed KPCA on
sets (dotted line). The latter exhibits increased performance both in terms of
convergence to O of the residual variance, and of the estimation of dimen-
sionality.

5. CONCLUSION

In this paper, we derive kernels between sets of vectors as similar-
ities between APR density estimates. The approach we propose is
computationally attractive, scales well in front of large dimensional
data and large learning sets and relies on no restrictive assumption.
Simulation results confirm the soundness of the approach.
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