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ABSTRACT

We propose in this paper a new family of kernels to handle
times series, notably speech data, within the framework of
kernel methods which includes popular algorithms such as
the Support Vector Machine. These kernels elaborate on the
well known Dynamic Time Warping (DTW) family of dis-
tances by considering the same set of elementary operations,
namely substitutions and repetitions of tokens, to map a se-
quence onto another. Associating to each of these operations
a given score, DTW algorithms use dynamic programming
techniques to compute an optimal sequence of operationswith
high overall score. In this paper we consider instead the score
spanned by all possible alignments, take a smoothed version
of their maximum and derive a kernel out of this formulation.
We prove that this kernel is positive de nite under favorable
conditions and show how it can be tuned effectively for prac-
tical applications as we report encouraging results on a speech
recognition task.

Index Terms— kernel methods, dynamic time warping,
speech recognition, support vector machines.

1. INTRODUCTION

De ning adequate kernels to handle properly structured ob-
jects, and notably time series, remains a key challenge for
practitioners interested in the application of kernel methods
to real-life data-sets. While practitioners willing to use ker-
nel machines are tempted to apply standard vector kernels
on time series, such as the popular Gaussian and polynomial
kernels implemented in most toolboxes, they are faced with
two issues: rst, the time series considered in their databases
might be of variable length, and second, standard kernels for
vectors cannot capture by construction the local dependencies
between neighboring states of their time series. On the other
hand, a family of similarities based on dynamic programming
and well-known to the communities of speech, bioinformat-
ics and text-processing has been taken into account to con-
struct kernels, namely the Dynamic-Time-Warping (DTW)
score [1, 2], the Smith Waterman algorithm [3] and the edit-
distance [4]. Since all these criteria do take into account the
two aforementioned issues, practitioners have been tempted

to use them directly with SVM implementations. However,
such distances cannot be translated easily into positive de -
nite kernels, which is an important requirement of kernel ma-
chines in the training phase. Intuitively such distances do not
show favorable positive de niteness properties as they rely on
the computation of an optimum rather than on the construc-
tion of a feature map, an issue that was studied in both [4]
and [3]. Building on these references, we propose in this work
a new family of kernels between time series mostly inspired
by the approach of [3]. These kernels are positive de nite ker-
nels under favorable conditions, but most importantly, they in-
corporate by construction more information on the compared
sequences than the kernels proposed in [1, 2], while requiring
exactly the same computational cost. In Section 2, we de ne
such alignment kernels, prove their positive de niteness and
show that they can be computed ef ciently. We follow by pre-
senting in Section 3 experimental results on an isolated-word
recognition task using a multiclass-SVM setting, where align-
ment kernels need to be rescaled due to a diagonal dominance
issue but still show very encouraging performances.

2. ALIGNMENT KERNELS

We write � for the set of natural positive integers, that is
{1, 2, . . .}. Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be
two nite series taking values in a state space X , that is two

elements of X � def
= ∪∞i=1X

i. We de ne the alignment kernel
in the following subsection and study its theoretical and com-
putational properties in Section 2.2 and Section 2.3.

2.1. Considering the soft-max of all alignment scores

An alignment π of length |π| = p between two sequences x
and y is a pair of increasing p-tuples (π1, π2) such that

1 = π1(1) ≤ · · · ≤ π1(p) = n,

1 = π2(1) ≤ · · · ≤ π2(p) = m,

with unitary increments and no simultaneous repetitions, that
is ∀1 ≤ i ≤ p − 1,

π1(i + 1) ≤ π1(i) + 1, π2(j + 1) ≤ π2(j) + 1,

(π1(i + 1)− π1(i)) + (π2(i + 1)− π2(i)) ≥ 1.
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We write A(x, y) for the set of all possible alignments be-
tween x and y. Intuitively, an alignment π between x and y
describes a way to associate each element of a sequence x
to one or possibly more elements in y, and vice-versa. Such
alignments can be conveniently represented by paths in the
n × m grid displayed in Figure 1. An important difference
between the alignments de ned here and those considered
in [3] is that we allow tokens to repeat themselves to han-
dle variable-length sequences while [3] consider gaps instead.
Gaps make sense in biological sequence analysis, where in-
sertions and deletions of patterns appear frequently in mu-
tations of amino-acid sequences, while repeated states make
more sense in applications such as speech. This has both the-
oretical and practical implications, since our algorithm and
its theoretical justi cation are slightly different than those ex-
posed in [3]. Following the well-known principle underlying
DTW scores, the authors of [2] and [1] consider the score:

S(π) =

|π|∑
i=1

ϕ(xπ1(i), yπ2(i)),

where ϕ is an arbitrary conditionally positive-de nite kernel
de ned on X × X (such as minus the squared Euclidian dis-
tance in the case where X is Euclidian in [2] or directly a
Gaussian kernel in [1]). Dynamic programming algorithms
provide an ef cient way to compute the optimal path π� in
terms of mean-score with respect to ϕ,

π� = argmax
π∈A(x,y)

1

|π|
S(π).

The authors of [2] use a truly c.p.d. kernel (that is non p.d.),
namely minus the Euclidian distance ϕ(x, y) = −‖x−y‖2, to
de ne then a “seemingly” p.d kernel through exponentiation:

kDTW1
(x, y) = e

1
|π�|

S(π�)

= exp

⎛
⎝−argmin

π∈A(x,y)

1

|π|

|π|∑
i=1

‖xπ1(i) − yπ2(i)‖
2

⎞
⎠ ,

while the authors of [1] use instead the Gaussian kernel for ϕ
and directly consider1 the corresponding score S as a kernel:

kDTW2(x, y) = argmax
π∈A(x,y)

1

|π|

|π|∑
i=1

e−
1
σ2
‖xπ1(i)−yπ2(i)‖

2

.

Note that both approaches stem from a c.p.d. kernel ϕ(x, y) =
−‖x−y‖2 which is either exponentiated once S is maximized
as in [2], or directly exponentiated in the de nition of S to
yield an optimal sum of Gaussian kernels as in [1]. In both

1we have dropped to improve the readability of this presentation a few
more parameters that both the authors of [1, 2] incorporate, but which do
not change the overall form of the criteria they consider. We take them into
account in the experimental section.
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Fig. 1. An alignment π can be interpreted as a path in
the n × m grid presented above, lled with the correspond-
ing kernel values ki,j = k(xi, yj). The optimal path π�

is such that
∏|π|
i=1 k(xπ1(i), yπ2(i)) is maximal, and corre-

sponds in that case to π1 = (1, 2, 2, 3, 4, 5, 5, 5) and π2 =
(1, 2, 3, 4, 4, 5, 6, 7). Rather than considering only the contri-
bution of π�, we propose to sum up over all possible align-
ment paths starting from (1, 1) and leading to (5, 7), such as
the ones represented by the two other paths.

cases, the authors aim to take advantage of such an exponen-
tiation to turn the kernel seemingly positive de nite, although
this is not insured neither in theory nor in practice. We refer
to the proofs of [4] and [3] to give the reader an intuition of
why this is so.

The kernel we propose is not based on an optimal path
chosen given a criterion S induced by ϕ, but takes advan-
tage of all score values {S(π), π ∈ A(x, y)} spanned by all
possible alignments. We argue that the following kernel is
positive-de nite under mild conditions and may prove more
robust to quantify the similarity of two sequences:

K(x, y) =
∑

π∈A(x,y)

eS(π) =
∑

π∈A(x,y)

e
�|π|

i=1 ϕ(xπ1(i),yπ2(i))

=
∑

π∈A(x,y)

|π|∏
i=1

k(xπ1(i), yπ2(i))

(1)
where we have written k = eϕ. Positive de niteness aside,
the main motivation of Equation (1) is to consider the soft-
max2 of the scores of all possible alignments, rather than the
simple maximum of the considered criterion. Intuitively, the
sum of Equation (1) quanti es the quality of both the optimal
alignment and all the alignments which are close to it, just as
the kernels presented in [5] compare two histograms through
the polytope of all possible transportation plans which may
map one histogram to the other, rather than considering the
optimal one usually associated with the Monge-Kantorovich

2given a family of positive scalars z = z1, z2, . . . , zn we de ne the soft-
max of z as log

�
e
zi
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distance. In the sense of kernel K , two sequences are similar
not only if they have one single alignment with high score,
but do rather share a wide set of ef cient alignments.

2.2. Positive De niteness of the Alignment kernel

We provide in this section suf cient conditions on k to prove
that K is a positive de nite kernel.

Theorem 1 Let k be a p.d. kernel such that k
1+k is positive

de nite, then K as de ned in Equation (1) is positive de nite.

Proof. For any sequence x = (x1, . . . , xn) ∈ X � and any
sequence a ∈ �n we write xa for

xa = (x1, · · · , x1︸ ︷︷ ︸
a1 times

, x2 · · ·x2︸ ︷︷ ︸
a2 times

, . . . , xn, · · · , xn︸ ︷︷ ︸
an times

).

We de ne further for a sequence x of size n the family φs(x)
indexed by any element s ∈ X � as the quantity

φs(x) = card{a ∈ �n : xa = s}.

Note for instance that if X = {0, 1}, φ0001(01) = 1 while
φ0001(001) = 2. Let now κ be the following kernel on X �,
itself parameterized by an arbitrary p.d. kernel χ on X :

κ(x, y) =

{∏|x|
i=1 χ(xi, yi) if |x| = |y|,

0 if |x| �= |y|.

κ is trivially a p.d. kernel on the whole of X �: simply note
that for any sample x1, . . . , xN of points in X �, the matrix
[κ(xi, xj)] can be rearranged in a block diagonal form by sort-
ing x1, . . . , xN in increasing length, with blocks which are all
positive de nite. The kernel K de ned on x, y ∈ X �

K(x, y) =
∑
s∈X �

∑
s′∈X �

φs(x)φs′(y)κ(s, s′)

is positive de nite by construction, and can be rewritten as

K(x, y) =
∑
a∈�n

∑
b∈�m

κ(xa, xb),

where n = |x| and m = |y|. We write ε for the sequence
1, 2, 3, ... and given a ∈ �p, εa for

εa = (1, · · · , 1︸ ︷︷ ︸
a1 times

, 2, · · · 2︸ ︷︷ ︸
a2 times

, . . . , p, · · · , p︸ ︷︷ ︸
ap times

).

For two sequences of same length up1 and vp1 we write u⊗v for
((u1, v1), . . . , (up, vp)). A couple (a, b) ∈ �n ×�m de nes
a sequence of double indexes εa⊗εb, which we use to express
K as

K(x, y) =
∑

a∈�n,b∈�m
‖a‖=‖b‖

‖a‖∏
i=1

χ((x, y)εa⊗εb(i)).

Note now that for each couple (a, b) there exists a unique
alignment π and an integral vector v of adequate size such that
πv = εa⊗ εb (π is namely the sequence εa⊗ εb stripped of all
repeats, recorded in v), and conversely that for every couple
(π, v) there exists a unique pair (a, b) such that πv = εa⊗ εb.
Hence, writing χπ(i) as a short cut for χ(xπ1(i), xπ2(i)), we
have that

K(x, y) =
∑
π∈A

∑
v∈�|π|

|π|∏
j=1

χ((x, y)πv(j))

=
∑
π∈A

∑
v∈�|π|

|π|∏
j=1

χ
vj
π(j)

=
∑
π∈A

|π|∏
j=1

(
χπ(j) + χ2

π(j) + χ3
π(j) + · · ·

)

=
∑
π∈A

|π|∏
j=1

χπ(j)

1− χπ(j)
.

Setting now χ = k
1+k , we recover the expression of Equa-

tion (1).
Remark. Kernels k such that k

1+k is positive de nite can

be trivially computed by considering rst a kernel k̃ such that
|k̃| < 1 and de ning k =

∑∞
i=1 k̃i = k̃/(1 − k̃). If X is

Euclidian and k̃ is for instance the halved Gaussian kernel
1
2e−

1
σ2
‖x−y‖2 , then the kernel

k(x, y) =
1
2e−

1
σ2
‖x−y‖2

1− 1
2e−

1
σ2
‖x−y‖2

can be directly used, and is itself numerically very similar to
the Gaussian kernel. In practice, most kernels that we consid-
ered, including the Gaussian kernel and the exponential of the
Gaussian kernel, have the property that k

1+k yields positive
semide nite matrices in practice, which in an experimental
context will be suf cient.

2.3. Computation and Factorization

We show in this section that the computation of the alignment
kernel K can be performed in quadratic complexity, namely
in |x‖y| iterations, similarly to the naive implementation of
DTW scores.

Theorem 2 Given x = (x1, . . . , xn) and y = (y1, . . . , ym)
two sequences of X �, we set the double-subscripted series
Mi,j as Mi,0 = 0 for i = 1, . . . , n, M0,j = 0 for j =
1, . . . , m, and M0,0 = 1. Computing recursively for (i, j) ∈
{1, . . . , n} × {1, . . . , m} the terms

Mi,j = (Mi,j−1 + Mi−1,j−1 + Mi−1,j) k(xi, yj),

we obtain that K(x, y) = Mn,m
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Proof. We do not present the proof here by lack of space, but
the result is proved by recursion and can be intuitively thought
as an equivalent of the DTW algorithm where the max-sum
algebra is simply replaced by the sum-product one.

3. EXPERIMENTS

The proposed kernel was tested on the English E-set of the
TI46 database, which consists of 3724 spoken letters from
the set {B,C,D,E,G,P,T,V,Z}. The set has a prede ned di-
vision into a training set and a test-set with 1433 and 2291
utterances, respectively. From each signal we extracted a se-
quence of 13-dimensional feature vectors with Mel-frequency
cepstral coef cients (MFCC), hence X is simply R13 here.
The feature vectors were computed every 10 ms using a 25
ms wide Hamming window.

We compare in this section three different methods to pre-
dict a letter from a signal: rst, a conventional HMM ap-
proach where we estimate the parameters of an HMM model
for each letter based on the training set, and use these dis-
tributions to associate to a sequence in the test-set the letter
for which it has maximum likelihood. We use a left-to-right
HMM model with 6 states and 5 mixtures in each state with
diagonal covariance matrices. The distributions were actually
estimated using the delta and acceleration coef cients (that is
on elements of R39), which are known to improve their per-
formance.

Our second and third approaches are based on a standard
one-vs-all multiclass SVM, using the spider-toolbox3. We use
the kernel proposed in [1] and the alignment kernel with ϕ
de ned as the Gaussian kernel. In both cases the parameter
σ ∈ {10, 15, 20, 25, 30, 35, 40} of the Gaussian kernel along
with the regularization constant C ∈ {10i, i = −2, . . . , 6} of
the SVM’s are rst selected to obtain the best cross validation
(CV) error on the training set, estimated on 4 folds with 4 re-
peats. Facing exactly the same problem encountered in [3],
we have to address the fact that the values of the alignment
kernel are exceedingly diagonally dominant, that is that the
value of the kernel k(x, x) for a point against himself is many
orders of magnitude larger than k(x, y). Hence, and although
this operation is known not to conserve positive de niteness,
we directly use the logarithm of the alignment kernel logK
to rescale the obtained values. The empirical Gram matrix
obtained on the training set was regularized by adding to it
minus its smallest eigenvalue times the identity matrix to turn
all its eigenvalues positive, while the train versus test-sets ker-
nel matrix was left unchanged . The same procedure was also
conducted for the DTW kernel proposed in [1] which also
produces negative eigenvalues.

We obtained a test error of 11.7% for the HMM approach,
11.5% for the kernel of [1] (σ = 15, with 10.3% CV error
on the training set) and 5.4% for the alignment kernel (σ =

3see http://www.kyb.tuebingen.mpg.de/bs/people/spider/

25 and 4.3% for train CV error), giving to the log-alignment
kernel a fair edge. The regularization parameter C did not
have a strong in uence on our results when set in the middle
range and was xed at C = 1000. To compare further the
two kernels, we performed a 4-fold cross validation with 4
repeats on the merged train and test sets, and plot in Figure 2
the CV error of each kernel as a function of σ to illustrate
the in uence of the parameter on overall results. Figure 2
clearly advocates the soft-max perspective provided by the
log-alignment kernel.
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Fig. 2. 4-fold with 4-repeats cross validation errors on the
whole dataset of 3724 utterances as a function of the σ-
Gaussian kernel width for the two studied kernels. All CV
standard deviations are below a tenth of the presented values.
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