
A SUBSPACE SIGNAL PROCESSING TECHNIQUE FOR CONCEALEDWEAPONS
DETECTION

Ahmed S. Ibrahim, K. J. Ray Liu ∗

Electrical and Computer Engineering Dept.,
University of Maryland,
College Park, MD 20742
{asalah, kjrliu}@umd.edu

Dalma Novak, Rod B. Waterhouse †

Pharad, LLC
797 Cromwell Park Drive,

Suite V, Glen Burnie, MD 21061
{dnovak, rwaterhouse}@pharad.com

ABSTRACT

Concealed weapons detection is one of the greatest challenges
facing national security nowadays. Recently, it has been shown
that each weapon can have a unique ngerprint, which is a set
of electromagnetic (EM) resonant frequencies determined by
its size, shape, and physical composition. Extracting the res-
onant frequencies of each weapon is one of the major tasks
of any detection system. In this paper, we model the re ected
signal from each object as a summation of sinusoidal signals,
each at certain frequency equal to one of the object’s reso-
nant frequencies. Using this model, we propose a detection
approach that is based on a modi ed version of the MUlti-
ple SIgnal Classi cation (MUSIC) algorithm. We show by
simulations that each object can be represented using a two-
dimensional vector, which consists of its two major resonant
frequencies.

Index Terms— MUSIC algorithm, natural resonance, sig-
nal processing, subspace algorithms.

1. INTRODUCTION
Concealed weapons detection in public places such as airport
concourses, passenger train terminals, and shopping center
entrances is one of the greatest challenges facing national se-
curity. Most of the current weapons detection systems, such
as portable instruments and walk through detectors, have sev-
eral drawbacks. Portable instruments endanger their users as
they require close proximity to the person being searched,
while walk through detectors require crowds of people to be
channeled to choke points, which cause large delays. Thus,
there is an urgent need for a new concealed weapons detec-
tion system which detects weapons from a distance in a quick
and ef cient way.
Recently, there have been demonstrations that weapons

have ngerprints just like people do [1], [2]. In [2], it has been
shown that each weapon can have a unique signature, which
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Fig. 1. Measured frequency response of various objects.

is a set of electromagnetic (EM) resonant frequencies deter-
mined by its size, shape, and physical composition. Based on
this fact a detection system can be built, which rst excites
the object’s natural resonance then characterizes it using its
re ected frequency response.
Fig. 1 depicts the amplitude of the frequency spectrum re-

ected from different objects, which are 0.45 semi-automatic
pistol, 0.38 steel revolver, 0.357 magnum revolver, and a cell
phone. Due to the noise and multipath effects, the response of
each object is not distinguishable. In other words, there is no
indication of certain resonant frequencies, where there exist
clear peaks. Thus, the main goal of this paper is to develop a
non-intrusive ef cient signal processing algorithm, which ex-
tracts each weapon’s signature in an ef cient and quick way.
Various signal processing techniques have been applied

to extract each object’s signature in both time and frequency
domains. In [1], Prony’s method was used to extract the sig-
nature of each object in the time domain. However, its per-
formance is affected dramatically by its window width and
starting location. In [2], the matched lter technique was im-
plemented to differentiate between different weapons in the
frequency domain. As shown in Fig. 1, it is dif cult to charac-
terize each object’s response based on its shape. In addition,
this approach requires the detector to store an analog version
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of the frequency spectrum of each object as its lter response,
which requires huge storage capacity.
The major contribution of this paper is the signal model

we are proposing to characterize the natural resonance of the
interrogated objects. Due to the natural resonance phenom-
enon of an object, its frequency spectrum should have clear
peaks at its resonant frequencies. This fact corresponds to
having a number of time-domain sinusoidal signals, each op-
erating at one of the object’s resonant frequencies. Therefore,
we model the re ected signal as a noisy version of summation
of a number of sinusoidal signals.
Based on the proposed model, the object’s response forms

a space, which can be decomposed into two orthogonal sub-
spaces, namely, a signal subspace and a noise subspace. The
signal subspace consists of all the resonant frequencies of the
re ected signal, while the noise subspace consists of all the
frequencies other than the resonant ones. For a composite
signal consisting of a number of sinusoidal signals, the sub-
space methods, particularly the MUltiple SIgnal Classi ca-
tion (MUSIC) [3]-[6], can determine accurately the frequen-
cies of the individual sinusoidal signals. Thus, the main prin-
ciple of our proposed detection approach is to apply a mod-
i ed version of the MUSIC algorithm to extract its resonant
frequencies.
The rest of this paper is organized as follows. In the next

section, we describe the proposed signal model including the
modi ed MUSIC algorithm. In Section 3, we present the
complete weapons detection system and the block diagram of
the detection approach. To illustrate the performance of the
proposed detection algorithm, we present some simulation re-
sults in Section 4. Finally, Section 5 concludes the paper and
presents future work.

2. PROPOSED SIGNAL MODEL
In this section, we describe our proposed signal model, which
can be used to represent the signal re ected from any object.
We assume that the interrogated object has K resonant fre-
quencies at frequency fi with magnitude Fi, i = 1, · · · , K.
Thus, it is expected that the measured frequency spectrum
of the signal re ected from this object should have K clear
peaks at these frequencies. This corresponds to having a time-
domain signal x(t), which can be expressed as

x(t) =
K∑

i=1

Fi exp(−2πjfit) + n(t) , (1)

where n(t) is an additive noise. The signal x(t) can be used
to form a space that can be decomposed into two orthogonal
subspaces, namely, a signal subspace and a noise subspace as
follows.
By sampling the composite signal atM different time in-

stants ti, i = 1, · · · , M , we can represent theM data samples
as

x = AF + n , (2)
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Fig. 2. Complete concealed weapons detection system.

where x = [x1 x2 · · ·xM ]T is the data vector, T denotes
the transpose, and xi = x(ti), i = 1, · · · ,M . The matrix
A = [a(f1) a(f2) · · · a(fK)] consists of the steering vectors
a(fk) = [exp(−2πjfkt1) exp(−2πjfkt2) · · · exp(−2πjfktM )]T .
Finally, the vector F = [F1 F2 · · ·FK ] represents the magni-
tudes of the signals and n = [n1 n2 · · ·nM ] is the noise vec-
tor.
TheMxM covariance matrix of the data vector x can be

calculated as
R = (x − μ)(x − μ)H , (3)

where μ is the mean of the vector x and H denotes the con-
jugate transpose. We employ the eigenvalue decomposition
for the covariance matrix R and calculate its eigenvalues and
eigenvectors. In addition, the eigenpairs are ordered in an as-
cending order according to the eigenvalues. The rstM − K
eigenvectors, which correspond to the smallestM −K eigen-
values, span the noise subspace while the lastK eigenvectors
form the signal subspace. Then matrix E, which represents
the noise subspace and consists of the noise eigenvectors, is
formed. Finally, the output power spectrum P (f) is com-
puted using the generic vector a(f) as

P (f) =
a(f)H a(f)
||a(f)H E||2 . (4)

Theoretically if f = fi, i = 1, · · · ,K, then a(fi) is or-
thogonal to the noise subspace, i.e., ||a(fi)HE||2 = 0 , which
causes the output response to jump to∞. In practice, this case
results in high peak at fi, i = 1, · · · , K. Therefore, the out-
put response has K different peaks corresponding to the K
different signal components in the re ected signal.
Since R is constructed as in (3), thus it has a unity rank.

An averaging algorithm is needed, before employing the eigen-
value decomposition on R, in order to restore its rank. There-
fore we apply an averaging algorithm, namely forward back-
ward averaging method [4]-[6], to the covariance matrix R
(3) and obtain an averaged one, on which we apply the eigen-
value decomposition, as described above.

3. CONCEALEDWEAPONS DETECTION SYSTEM
In this section, we describe the complete concealed weapons
detection system in details. In addition, we present the block
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Fig. 3. Block diagram of the detection algorithm.

diagram of the detection approach. Fig. 2 depicts the com-
plete detection system, which consists of a number of sen-
sors as well as a central processing unit. The sensors can be
mounted to walls or ceilings forming an interrogation zone.
These sensors screen the people in the formed interrogation
zone, without the need for any designated choke point. In
general, one weapon or more can exist in the interrogation
zone. Thus, the detection system rst detects if a weapon
is present, then classi es what kind of weapon it is. In this
paper, we consider that only one weapon exists in the the in-
terrogation zone and we identify it based on its EM signature.
Prior to being deployed, each sensor’s memory will be

loaded with a library of EM signatures. These unique signa-
tures will be extracted using noise-free measurements of the
objects within the Ka-band (26-40 GHz) frequency spectrum.
Once a sensor is installed, it continuously uses millimeter-
wave (mm-wave) frequencies to excite the EM resonances of
the interrogated object. Then, it measures the resulting fre-
quency response. The detection algorithm is then tasked with
estimating whether one or more of the signatures within the
library are present in the measurement.
Finally, each sensor will send its decisions regularly to

the central unit. The central unit collects the local decisions
from the sensors and combines them to reach a nal decision,
whether there exit threatening objects or not. Once a person
is identi ed as carrying a weapon, law enforcement of cers
will be alerted to intercept the particular individual.
The block diagram of the proposed detection algorithm

is shown in Fig. 3. Each sensor measures the response of
the re ected signal from the interrogated object at each fre-
quency. Then, the constructed frequency spectrum is fed into
the detection system, so that the resonant frequencies can be
extracted as follows. First, the input frequency spectrum is
converted to a time-domain signal using the standard Inverse
Discrete Fourier Transform (IDFT) procedure. Then, the re-
sulting time-domain signal is ltered by a non-linear lter,
which corresponds to applying the modi ed version of the
MUSIC algorithm, described in Section 2. Finally, the reso-
nant frequencies, where there exist high peaks, are identi ed
using a conventional peak-detection algorithm. These reso-
nant frequencies represent the object’s signature.

4. SIMULATION RESULTS
In this section, we present some computer simulations, which
clarify the effect of applying the proposed detection approach
on extracting the signature of each interrogated object. We ap-
ply our proposed detection approach, shown in Fig. 3, on the
measured objects’ frequency responses provided by Pharad.
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Fig. 4. Frequency spectra of the detection algorithm for vari-
ous objects.
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Pharad uses a mm-wave vector network analyzer (VNA) to
provide the mm-wave excitation signals. In addition, the VNA
functions as a tunable mm-wave receiver for detecting the re-
turned signals from the target, as well as a data processor in
determining the amplitude and phase of each signal.
In Fig. 1, we have shown the measured frequency spec-

tra for various objects and we have illustrated the dif culty of
distinguishing these objects based on these measured spectra.
Fig. 4 depicts the resulting frequency spectrum of the detec-
tion algorithm for the various interrogated objects illustrated
in Fig. 1. As shown, the spectrum of each object has more
than one peak at certain frequencies, which correspond to the
object’s resonance frequencies.
In Fig. 5, we show the resulting frequency response for

additional interrogated objects, which are the 0.38 titanium
revolver, wrench, and a set of keys. Similarly, these objects
can be identi ed using a unique signature for each object. For
the interrogated objects shown in Fig. 4 and Fig. 5, we have
considered K = 2 in the signal model, described in (1). In
these gures, each object is characterized by two resonant fre-
quencies, where the highest two peaks occur. Therefore, each
object’s signature is represented as a two-dimensional vector,
representing its resonant frequencies. Consequently, we can
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Fig. 6. Two-dimensional signatures of various objects.

construct a two-dimensional space to represent these objects,
where the rst and second dimension represent the rst and
second resonant frequency, respectively.
Fig. 6 depicts the signature of each interrogated object,

represented as a point in a two-dimensional plot. As shown,
each object has a unique signature, which does not coincide
with any other object. In addition, there is a signi cant gap
between the various interrogated objects. More precisely, non-
threatening objects such as the cell phone and keys can be eas-
ily distinguished from the threatening ones. Having each ob-
ject of interest represented as a two-dimensional vector allows
the classi cation process of any test object to be implemented
very quickly. Furthermore, each sensor needs to store much
less information about each object, compared to the matched
lter approach [2].
We also consider the dependence of the proposed algo-

rithm on the distance. In order to test that, we have chosen a
cylinder that is symmetric with respect to all directions. We
have varied the distance between the cylinder and the sen-
sor to be 5, 9, and 11 feet. Fig. 7 depicts the resonance fre-
quencies for the cylinder measured at different ranges. It is
shown that there are two major common resonance frequen-
cies among the three different curves, which are f1 = 33.14
and f2 = 39.23. In other words, the cylinder’s signature rep-
resented as a two-dimensional vector [33.14, 39.23] is inde-
pendent of the distance between the sensor and the cylinder.
Therefore, the response of our proposed algorithm does not
depend on the distance between the sensor and the interro-
gated object, which is one of the main characteristics that
should exist in a weapons detection system.

5. CONCLUSION AND FUTUREWORK
In this paper, we have considered the concealed weapons de-
tection problem, where each weapon is identi ed based on
its resonant frequencies. In particular, we have modeled the
signal re ected back from any interrogated object as a sum-
mation of a number of sinusoidal signals, each corresponds
to one of its resonant frequencies. In addition, we have pro-
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Fig. 7. Cylinder’s signature at different distances.

posed a detection approach, based on a modi ed version of
the MUSIC algorithm, to extract the unique signature of each
weapon. We have shown that each interrogated object of in-
terest can be uniquely determined using a two-dimensional
vector. Moreover, we have shown that the resonant frequen-
cies, extracted by our proposed detection algorithm, do not
depend on the distance between the sensor and the interro-
gated object.
In future work, different classi cation algorithms will be

proposed to create an alarm indicating the existence of a con-
cealed weapon and further distinguish the different types of
weapons. In the situation where an individual may be carry-
ing more than one weapon with multiple weapon spectral sig-
natures being present in the returned signal, some advanced
schemes such as neural networks could also be employed to
nd the boundaries of the target classi cations.
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