
A NEW ADAPTIVE EDGE ENHANCEMENT ALGORITHM FOR COLOR
LASER PRINTERS

Manoj Kumar Masthan Reddy(1), Vladimir Misic(1, 2), Eli Saber(1), Jeff Trask(3)

1 - Department of Electrical Engineering, Rochester Institute of Technology, Rochester, NY.
2 - Radiation Oncology, Thomas Jefferson University, Philadelphia, PA.

3 - Hewlett Packard Company, Boise, ID.

ABSTRACT

This paper presents a novel algorithm for improving quality
of edges in printed text. The algorithm is designed to add
pixels at selected edge locations post halftoning. The extent
of the correction is proportional to the “strength” of the
edge, as determined by comparing the local differences in a
four-pixel neighborhood to a dynamically generated
threshold. The process is computationally efficient and
requires minimal memory resources. The performance of
our proposed algorithm is clearly demonstrated on several
characters and lines. While the algorithm aims to improve
the quality of printed text (edges), it is possible to extend its
application to improvement of any edge identifiable in
image document.

Index Terms- Text Edge Quality, Edge Rendering.

 1. INTRODUCTION

Text edge quality is a critical factor in judging print quality
of images and documents. Various methods have been
proposed for edge quality enhancement. One of the early
methods to address this problem uses anti-aliasing wherein
two adjacent pels in the oblique direction are detected and a
corrective pixel is inserted to smooth the line [1]. This
technique is not very effective for regions containing
complex contours. Template matching is another widely
used technique for print quality enhancement [2, 3].
However, this approach requires predefined
regions/conditions that can add to the processing time
depending on the document complexity. Simpler, yet
effective techniques first convert the text to black and white
and then reconvert it as described by Atkins [4]. Braica [5]
states a method of enhancement by increasing the contrast at
the edge.

This paper presents a new algorithm for improving the
quality of edges produced by electro-photographic laser
printers. The extent of the correction is determined by
comparing the local difference in a first-order neighborhood
to a dynamically generated threshold. The paper presents a

general overview of the algorithm and illustrates its
performance on a specific printer, namely Printer X.
 The rest of the paper is organized as follows. Section 2
presents the experimental setup (the pipeline) used. Section
3 describes the dynamic threshold generation algorithm.
Results are presented in Section 4 and conclusions are drawn
in Section 5.

2. EXPERIMENTAL SETUP

The experimental setup is presented in Fig. 1. Figures 1a and
1b illustrate the original and modified printing pipeline
employed in our experiments. In the original pipeline, the
test target is first processed through a look-up table that
converts it from its current color representation, such as
RGB, to the printer CMYK domain. This continuous CMYK
image is then halftoned and the resulting binary image is
printed. The CMYK images before and after halftoning are
referred to as the indump and outdump respectively. Indump
represents the continuous color image, and outdump refers to
the halftoned, uncorrected image. The modified pipeline, on
the other hand, mimics the original (see Fig. 1b) with one
main exception: the outdump is re-routed through our
proposed algorithm prior to printing. In essence, our
algorithm is designed to intercept the halftoned output,
assess and improve the edge quality and then release the
raster for printing yielding a higher quality output.

Figure 1: Experimental Setup of the printer. (a) Original
print pipeline (b) Modified print pipeline.

* - Indump (Iin) ** - Outdump (Iout)

**

Test
Target O/P

(a)

(b)

Look
Up

Table

Test
Target

 Half-
toning

Look
Up

Table
 Printer

Proposed Algorithm

O/P

 Half-
toning

 Printer*

II 3931424407281/07/$20.00 ©2007 IEEE ICASSP 2007

3. PROPOSED ALGORITHM

During the process of halftoning, the number of gray levels
in the indump (Iin) is reduced from 256 to a fixed number in
the outdump (Iout) as dictated by the halftone screen of the
printer. This generally results in edges being rendered with
sub-optimal quality. To overcome this shortcoming, our
proposed algorithm is designed to selectively insert pixels at
edges in Iout to enhance the perceived edge quality, without
removing any of the original edge pixels. Hence, the existing
halftone prior to the modification is not disturbed but
augmented as needed to improve the quality of the output.
To this effect, the algorithm first pre-processes Iout in order
to locate the relevant edges and determines the pixels/
locations that are candidates for enhancement. The details of
the pre-processing stage are presented below.

At each location in Iout, the pixel value is compared
to zero. If the result is false (not zero), the algorithm
proceeds to the next pixel in the raster order. However, if the
result is true, the pixel in question is either a white space
(non-character) or was not rendered to the proper level
during halftoning. This issue is resolved by comparing the
input gray level, at the same location in Iin, with zero.
Depending on the result of the comparison, the algorithm
either proceeds to the edge enhancement (case true) or skips
it (case false). A detailed flowchart of the algorithm is
shown in Figure 2.

3.1 Edge Enhancement

The next objective of our proposed algorithm is to introduce
pixels that enhance the edge quality. However, a few
practical issues arise during this phase. First, there is a
restriction on the gray level of the corrective pixels that can
be used (determined by the halftoning output, generally
between 2-4 levels). This brings up the issue of retaining the
visual quality of the alphabet after modification - the edge
pixels should be inserted in such a manner that the end user
should not notice any saturation shift.

After the pre-processing stage, it can only be deduced
that an output pixel is missing. Thus, it is imperative to
properly recognize the spatial location of the observed pixel:
out-of-character, on the edge, or within the character. This is
necessary since a pixel can belong to within a given
character and the existing halftoning algorithm may have
decided not to render it, in which case it is not to be
disturbed. The spatial localization of the pixel is calculated
by utilizing the following procedure.

For a pixel at location (i, j) with the intensity value Iin (i,
j), the following terms are computed:

(i) Iin (i, j) - Iin (i, j+1), (iii) Iin (i, j) - Iin (i-1, j),
(ii) Iin (i, j) - Iin (i, j-1), (iv) Iin (i+1, j) - Iin (i, j-1).

For ease of presentation, the terms (i), (ii), (iii) and (iv)
are generalized to a single term ‘edge difference’ that refers

to the difference between a pixel and its immediate
neighbors (top, bottom, left or right).

The edge difference provides pertinent information
about Iin (i, j) with respect to its neighbors and its relative
impact in the local neighborhood. If it is less than or equal to
zero, the pixel either lies within the character, or on the
lighter side of the edge, in which case corrective pixels need
not be added. If it is greater than zero, it can be ascertained
that the pixel lies on the darker side of the edge and, as a
result, a corrective pixel has to be introduced to improve the
edge quality. This condition is expressed as:

 edge difference > 0 (1)

Figure 2: Flowchart of the algorithm at any pixel (i,j). R and
C are the number of rows and columns in Iout respectively.

Once it has been decided that a corrective pixel needs to
be introduced, the actions that follow must ensure that the
overall visual quality of the character is not significantly
altered post correction. Hence, pixels are inserted only on
the darker side of corresponding edges. Also, corrective
pixels are inserted quasi-randomly along the edge and not at
all available edge locations. This objective is attained by a
comparison of the edge difference and a non-negative
dynamic threshold, T (detailed in Section 3.2). A pixel is
inserted at a given location only when the edge difference is
greater than T. The condition described in Eq. 1 is thus
replaced (upgraded) by a stronger criterion:

 edge difference > T (2)

To avoid unnecessary calculation of the threshold T,
both criteria (Eq. 1 and Eq. 2) are handled as separate steps
in the algorithm, yielding a higher throughput. Hence, only
when both conditions (1) and (2) are true, a corrective edge

Y

N

N

N
Y

Y
Iout (i,j) ≠ 0

Iin (i,j) ≠ 0

Start

Edge Enhancement

End

Is i = R &
 j = C?

II 394

pixel is inserted in Iout. The complete flowchart is presented
in Fig. 3. The procedure utilized to compute the dynamic
threshold is detailed below.

3.2 Dynamic Threshold

The dynamic threshold is a number that is calculated real-
time depending on the spatial location of the pixel. The main
purpose of computing the dynamic threshold in Eq. (2) is to
ensure that only selective edge pixels are restored to retain
the visual quality of the character as mentioned above. This
threshold is generated as follows:

 ()cjbiaT mod)(∗+∗= (3)

where i, j are the pixel locations in Iin and a, b, c are derived
from mutually prime numbers. T is a number between 0 and
c-1 (ideally, c = 256). It should be noted that any method
that yields well separated mutually prime numbers can be
used for this purpose. In the experiments performed, the
Tribonacci Series as defined by Eq. (4) was used to derive
the parameters a, b and c. The corresponding initial
conditions for the series are defined in Eq. (5):

Trn = Trn-1 + Trn-2 + Trn-3 (for n>2) (4)
 Tr0 = 0, Tr1 = 1, Tr2 = 1 (5)

Any three consecutive terms derived from Eq. (4) can
be used as parameters a, b and c. However, such choice of
numbers might not be optimal for efficient hardware
implementation. Therefore, a normalization (followed by a
rounding) of a, b, and c by the factor of λ = 256/c is
suggested.

An analysis of the region circled in Fig. 1 is presented
in Fig. 4. The gray level of the character was 136 on the
magenta plane. Fig. 4(a) is the corresponding indump, Iin

after the character has been processed through the look up
table (see Fig. 1 for details). Fig. 4(b) is the corresponding
outdump, Iout and Fig. 4(c) is the modified image. It can be
noted from Fig. 4(c) that the algorithm only enhances the
edge at certain specific points as discussed in Section 3.1 to
avoid the visual effect of “edge thickening”. By doing so,
the visual quality of the character is also preserved resulting
in a much higher quality of rendered edges. The
performance of the algorithm on the complete character can
be seen in Fig. 5.

4. RESULTS AND DISCUSSIONS

The performance of the algorithm was tested on all four
color planes at various gray levels and for two different
fonts, namely Times New Roman (TNR) and Garamond.
Garamond was chosen because the character set is
comprised of relatively thinner strokes. The test target was
designed to encompass several characters with various sizes

that possess all possible gray levels that the printer might
encounter during run-time.

The first set of test targets was developed using TNR of
sizes 10-12 pt. which is the most widely used (and affected)
size. The performance of the algorithm on this set can be
seen in Fig. 5 and Fig. 6. As seen in Fig. 5, the algorithm
gives better edge quality on the rightmost and the center bars
of the letter. Similar edge improvements are also observed
(see Fig. 6) on the more subtle “tilde” and “serif” aspects of
characters. This is well demonstrated in the magenta plane
where the serif is not well rendered (see Fig. 6b).

Figure 3: Edge Enhancement module.

Figure 4: Magnified portion of rightmost bar of alphabet
‘W’ used in Fig.1. Left to right: In, Iout, corrected character.

The next set of test targets was designed by utilizing the
Garamond font with various point sizes as well. The
performance of our algorithm on this set is shown in Fig. 7.
For this font, the cyan plane was more affected than the
other planes as shown in Fig. 7. To this effect, the algorithm
inserts more pixels in the cyan channel than in the other
channels during edge enhancement. Note that the observed
differences in the original halftoning are a result of the use
of rotated screens for the various channels.

Y

Generate T

E1 > T

E3 > T

E4 > T

E1 = Iin (i,j) -
Iin (i,j+1)

E2 = Iin (i,j) -
Iin (i+1,j)

E3 = Iin (i,j) -
Iin (i,j-1)

E4 = Iin (i,j) -
Iin (i-1,j)

At any pixel
Iin (i,j)

Main Module

Start

Insert
Pixel

E2 > T
Y

Y

Y

N

N

N

II 395

The algorithm was also tested on thin lines inclined in
steps of 5 degrees. As can be seen from Fig. 8, the algorithm
effectively restores the lost details of the lines. The effect is
particularly noticeable when the line has the same
inclination as the screen that is used for the corresponding
color during halftoning.

Figure 5: From left to right: Iin, Iout, corrected character.
Font-face: Times New Roman, Font-size: 10. Gray level:

136 on the respective plane(s).

Figure 6: From left to right: Iin, Iout, corrected character.
Font-face: Times New Roman, Font-size: 12. Gray level:

119 on the respective plane(s).

5. CONCLUSIONS

The proposed algorithm is very effective in improving the
quality of the edges. Its computational efficiency allows for
either hardware or software implementations without
disturbing the existing document workflow (i.e. internal
printer pipeline). Another significant feature is its self
adaptive correction i.e., the number of inserted pixels is
proportional to the strength of the edge. The algorithm treats
light colored and dark colored characters differently. In
highlights, the algorithm offers alternative renderings that
can even recover some of the lost edge details. Use of the
dynamic thresholding operation for rendering eliminates the
need for user supervision and extends its applicability.

Figure 7: From left to right: Iin, Iout, corrected character.
Font-face: Garamond, Font-size: 12. Gray level: 85 on the

respective plane(s).

Figure 8: Cyan lines at various angles (steps of 5 degrees).
Iin, Iout, corrected character.

ACKNOWLEDGEMENTS

This work was funded by the Laser Printing Division of
Hewlett Packard Company. The authors wish to thank Mr.
Guru Prashanth Balasubramanian for his review comments.

6. REFERENCES

[1] S.Yonezawa, T. Kawakami, T. Shimada, Y. Chida,
“Apparatus for forming a character out of a pattern of
separate display picture elements” US Patent No. 4079367,
Mar. 1978.
[2] M. Yao, M. T. Stevens, M. R. Parker, “Text and image
quality enhancement” US Patent No. 6987588, Jan. 2006.
[3] M. D. Lund, “Pixel image edge-smoothing method and
system” US Patent No. 5650858, July 1997.
[4] B. A. Clayton, “System and method for scaling and
enhancing color text images” US Patent No. 7046390, May
2006.
[5] P. Braica, “Edge detection and sharpening process for an
image” US Patent No. 7068852, June 2006.
[6] V. Misic, P. Anderson, “Algebraic Masks for color
halftoning” Proc. of SPIE, Vol. 566, pp. 441-448, 2005.

Iin

Iout

II 396

