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ABSTRACT 
 
The paper presents a hardware-efficient fast algorithm and 
its architecture for large search range motion estimation 
(ME) used in HDTV sized H.264 video coding. To solve the 
high cost and latency in large search range case, the 
proposed algorithm processes ME in parallel multi-
resolution levels instead of serial process in the previous 
approach. This enables high data reuse for lower bandwidth 
and low memory cost. Further combining with our previous 
proposed mode filtering and bit truncation, the algorithm 
only increases the bit rate within -0.58% and 3.06% and at 
most 0.04dB and 0.07dB PSNR degradation for 720p and 
1080p sequences respectively. The hardware 
implementation can save up to 49.5% of area cost and 65% 
of memory cost compared to the previous approach for large 
search range to [-128, 127].  
 

Index Terms— H.264, motion estimation, multi-
resolution 
 

1. INTRODUCTION 
 
MPEG-4 AVC/H.264 video coding [2] is the latest video 
coding standard that provides good coding efficiency and is 
widely adopted in emerging multimedia devices. In which, 
the variable block size motion estimation (VBSME) and its 
improved sub-pixel precision ME contributes a lot for 
coding efficiency but also dominates the computational 
loading of the whole encoding process. Thus VLSI 
realizations of VBSME have been widely proposed to 
speedup the process. However, most of them are only 
applicable for SDTV size or below. For HDTV size 
applications that requires large search range up to [-128, 
127] or even larger, previous approaches will consume too 
much area cost and computational cycles. 

To support large size research range, many fast integer 
ME algorithms have been proposed. However, most of them 
are not suitable for hardware implementation due to nearly 
prohibited memory bandwidth resulted from the poor data 
reuse flow. To solve this problem, one promising approach 

is the multi-resolution ME as one proposed in [1]. In [1], 
they use three hierarchical levels for search and refine the 
motion vector from the coarse level to the finest level. 
However, this approach has several disadvantages for 
hardware implementation. First, the motion vector found in 
the higher level needs to be further refined in the lower level. 
It means the search is a sequential process that will increase 
the cycle counts, and decrease the hardware utilization and 
throughput. Second, a full search range sized buffer is still 
needed because the dependency between the three 
hierarchical levels. It greatly increases the hardware costs 
for large search range design and diminishes the benefits of 
multi-resolution ME. Third, the required bandwidth is still 
quite large due to poor data reuse of the refinement process. 

To solve above problem, this paper proposes a parallel 
multi-Resolution ME (PMRME) algorithm and its 
architecture. The proposed algorithm uses three independent 
levels for search. The first two levels with data subsampling 
cover the large search range to find the rarely occurred large 
search vector. These two levels have good data reuse by 
fixing the searching center at (0, 0). On the other hand, the 
third level without data subsampling covers the search range 
with the most occurred MV. This level has the search center 
at the motion vector predictor. The concept behind our 
algorithm is the unequal distribution of motion vector that 
most of them are near the motion vector predictor. Thus, a 
fine search around the motion vector predictor can find the 
most of motion vector while the rest of motion vector can be 
found in the coarse search.  With above approaches, we can 
save at least 92.4% memory buffer compared with the 
previous method. Besides, data within two out of three 
memory buffers are highly reused, and thus can save about 
64.8% of memory bandwidth. 

The rest of the paper is organized as following. We first 
introduce our algorithm in Section 2 and its architecture in 
Section 3. The results and comparisons are presented in 
Section 4. Finally, a conclusion is made in Section 5 
 

2. THE PROPOSED ALGORITHM 
 

2.1 Parallel Multi-Resolution ME (PMRME) 
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PMRME includes three levels and all of them are 
independent to each other, as illustrated in Fig. 1. In the 
coarsest level, level 2, the SR is the largest, [-128~124], and 
centered on the original point (0, 0). This enables regular 
memory reuse between successive MB processing. This 
level uses the 16:1 sampling and thus we only choose the 
16x16 mode (mode 1 in Table 1) since other modes will 
contain too fewer pixels for SAD calculation.  

In level 1, the SR is reduced to [-32 ~ +30] and also 
centered on (0, 0) for the same reason as level 2. This level 
uses the 4:1 sampling and thus we only choose the 16x16 to 
8x8 mode (mode 1 to 4 in Table 1) since other modes will 
contain too fewer pixels for SAD calculation.   

In the finest level, level 0, the SR is set to [-8~+7]. 
However, unlike the other two levels with (0, 0) center, we 
choose the predictive motion vector (MVP) as the center 
due to its higher probability for final MV. Thus, we do not 
subsample data in this level and thus enable search for all 
variable block size modes.  

In the three parallel levels, the level 2 provides a large 
search range for high motion blocks with coarse precision. 
It is useful for very high motion blocks, and can find a good 
enough though approximate motion vector candidate. Also, 
the level 1 can provide a medium search range but a finer 
precision. The level 2 and level 1 are complementary to 
each other. With these two large search levels, the algorithm 
can rapidly converge for the motion search of the level 0 by 
effects of MVP. If only the level 0 is used, it is difficult to 
trace the high motion blocks because the MVP cannot 
follow up the real motion effectively in this case. 
 
2.2 Mode Filtering 
 
To further reduce the complexity, we use our previously 
proposed mode filtering method [1]. Thus, only two modes 
in the integer ME stage will be passed to the fraction ME 
stage to significantly reduce the fractional ME cycle. 
Besides, the method also increases the overall ME 
pipelining efficiency. 

 
2.3 Bit Truncation 
 
Two degrees of bit truncation [4] are used in our design. In 
our analysis (as in Table 4), five bits precision is enough to 
provide a good coding efficiency for the 720p sequences. 
However, at least six bits is needed for the 1080p sequences 
because of the very high definition characteristics. In our 
analysis, five bits for 1080p will cause larger bit rate 
increasing. 

By using the bit truncation method, about 38% and 28% 
hardware cost are saved for “5 bits precision” and “6 bits 
precision” respectively. 

 
 

 3. THE PROPOSED ARCHITECTURE 
 

Fig. 2 shows the proposed architecture. A 16x16 current 
block is shared for the three levels. The memory size and 
bandwidth for three reference frame buffers are listed in 
Table 2. The bit width of memory buffer of level 1 and level 
2 are also truncated, while that of the level 0 is not. The 
reason for this is that the level 0 data can be reused by the 
following fraction ME hardware if the best motion vector 
falls in the level 0, which can also save the bandwidth. 
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Fig. 2 the proposed architecture. 
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Fig. 1 the three level new multi-resolution algorithm. 

Table 1 the mode type and its block size for H.264 
Mode Block size 

Mode 1 16x16 
Mode 2 16x8 
Mode 3 8x16 
Mode 4 8x8 
Mode 5 8x4 
Mode 6 4x8 
Mode 7 4x4 
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In this architecture, all computations are decomposed as 

the combinations of 4x4 blocks, denoted as “primitive 
module”. This is the basic module to compute the SAD as 
depicted in Fig. 3. With this, every level can be easily 
implemented by regularly composed module. Thus, level 0 
has 16 primitive modules respectively. For level 1 with 4:1 
subsampling, only four primitive modules are needed for 
one “level 1 SAD module” for one search point. To further 
speedup the processing, we adopt four “level 1 SAD 
module”. Thus, totally 16 primitive modules are used as that 
in level 0. Similarly for level 2 with 16:1 subsampling, only 
one primitive module is needed for one “level 2 SAD 
module” for one search point. We also speedup the level 2 
by 16 “level 2 SAD module” and thus have the same area 
cost as level 0. The reason for such speedup to balance the 
computation cycles for different levels. Thus, computations 
for all levels can be done in 256 cycles. 

The SADs generated from the SAD modules are further 
summed up to generate the SAD of different block size. 
Level 0 has the most complex summation trees for 
combination of the seven kinds of block types. For the level 
1, four “8x8 SAD tree” are used for combination of the 

mode 1 to mode 4 block types. But in level 2, only 
comparators and registers are needed to select the minimum 
SAD cost. Finally, the selection module will choose the best 
two SAD costs from different levels for the fractional ME 
module.  
 

4. EXPERIMENTAL RESULTS 
 
Table 4 shows the simulation result for different parameters, 
PARME only, PARME with mode filtering (PARME+MF), 
PARME+MF with bit truncation. At last, we also test the 
algorithm performance for high motion sequences by 
skipping two frames.  

The simulation environments are as following: No rate-
distortion optimization (RDO); sequence type IPPP and SR 
is [-128, 127]. All of the simulation results are compared 
with that of the Fast-Full-Search (FFS) Algorithm in JM9.0 
[6]. The result in this table only shows the average 
performance under different QPs due to the page limit. For 
720p, the test sequence including: Stockholm, parkrun, and 
shields. The frame rate is 50 and 50 frames are coded. For 
1080p, the test sequence including: station2, rush_hour, and 
sunflower. The frame rate is 25 and 100 frames are tested. 
The 1920x1080p image is truncated to an image of 
1920x1072 to fit the multiples of 16. 
   The simulation shows the PMRME alone can achieve the 
similar video quality as the FFS. However, the distortion is 
larger under high OP because the blocky effect will be more 
serious for high QP and mislead the subsampling method. 
Further combining with MF, we can find that the bit-rate for 
low QP case sometimes lower than the FFS with the penalty 
of PSNR loss. If the truncation method is combined, the 
performance is a little worse. For 720p sequences, it has 
0.04dB PSNR loss but 1.62% of bite-rate decrease in 
average. As for 1080p sequences, it has 0.07dB PSNR loss 
and up to 1.20% of bit-rate increase in average. However, 
with slightly quality loss, we can save a lot of hardware cost 
as described in the previous section. For high motion 
sequences simulated by 2 frame skipping, the proposed 
design keeps the similar quality. It means the algorithm does 
well even for high motion sequences. 

In this table, the term “hit rate” means the percentages of 
motion vector falls in layer 0. With this, the memory data of 
level 0 can be directly reused by fraction ME and thus save 
a lot of bandwidth. In our design, the hit rate is at least 87%, 
and the higher QP will have higher hit rate and thus can 
save more power and BW. In our analysis, the hit rate for 
720p and 1080p is quite the same, so we conclude the 
search range 128 is enough for the 720p and 1080p 
sequence. However, the bit truncation method has stronger 
impact for 1080p. As we can see, the bit truncation method 
will lead to 1.20% bit-rate increasing for 1080p sequence. 
The rate-distortion (RD) curves of 720p and 1080p 
sequence are shown in Fig. 4 and Fig. 5. As we can see, the 
RD curves are almost overlapped with that by FFS. 

 Table 3 hardware cost comparison  

 SR Cell 
area(K) 

Memory 
(Kbyte) 

Frequency 
(MHz) 

T.C. Chen [5] H:+-64 
V:+-32 305 13.71 108 

for 720p 154 4.8 Ours for 1080p 
H:+-128 
V:+-128 180.1 5.6 100 

for 720p 49.5 % 65.0% Saving 
for 1080p 

 
41.0% 59.1% 

 

Table 2 memory and bandwidth for different frame size 
for 720p for 1080p Memory cost 

buffer size BW(per MB) buffer size BW(per MB)
Level 0 (Kbyte) 0.992 0.992 0.992 0.992 
Level 1 (Kbyte) 0.975 0.312 1.170 0.312 
Level 2 (Kbyte) 2.8475 0.268 3.417 0.268 
Total (Kbytes) 4.8145 1.572 5.579 1.572 
Direct design 73.712 4.336 73.712 4.336 
Saving (%) 93.46 64.8 92.43 64.8 
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Fig. 3 the primitive module 
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The proposed design has been implemented and 
synthesized.  Table 3 shows the total hardware cost of our 
design and comparison to other design. Our design can save 
at least 40% of area costs and 60% of memory costs. 

 
5. CONCLUSION  

 
In this paper, we propose a parallel multi-resolution 

algorithm and architecture of integer ME for H.264/AVC. 
The algorithm uses PMRME, MF and bit truncation to 
support large search range within 256 cycles. With data 
reuse and parallel multi-resolution, we can save at least 
92.43% of memory buffer and 64.8% of bandwidth. The 
resulted hardware can save up to 49.5% of area cost and 
65% of memory cost compared to the previous approach for 
720P processing. With above features, the proposed design 
is very suitable for larger search range application such as 
HDTV in a more economical way.   
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Fig. 5 The RD curve of 1080p sequence 

 
Fig. 4 The RD curve of 720p sequence 

Table 4 The simulation results 
 Frame size 720p 1080p 

PMRME+MF 
(5 bits) 

Skip 2 frame 

PMRME+MF 
(6bits) 

Skip 2 frame QP  PMRME PMRME+MF PMRME+MF
(5 bits) 

 Hit rate (%)

PMRME PMRME+MF PMRME+MF 
(6 bits) 

 Hit rate (%)
PSNR inc.(db) -0.01 -0.02 -0.02 -0.02 0.00 -0.08  -0.09 -0.05QP12 Bit rate inc. (%) -3.53 -4.87 -2.97 -4.10 88.62 -2.14 -4.62  -3.00 -3.93 87.69 

PSNR inc.(db) 0.00 -0.05 -0.03 -0.04 0.00 -0.07  -0.06 -0.06QP16 Bit rate inc. (%) -1.33 -2.56 -1.56 -2.38 90.41 -0.49 -1.09  0.47 -0.47 89.57 

PSNR inc.(db) 0.01 -0.09 -0.07 -0.07 -0.01 -0.04  -0.04 -0.03QP20 Bit rate inc. (%) -0.94 -2.40 -1.38 -2.13 91.67 -0.44 -0.22  2.65 1.89 92.33 

PSNR inc.(db) 0.00 -0.07 -0.06 -0.06 -0.03 -0.06  -0.06 -0.07QP24 Bit rate inc. (%) -1.26 -2.73 -1.63 -2.69 93.72 -0.40 -0.94  1.83 1.03 93.19 

PSNR inc.(db) 0.00 -0.05 -0.04 -0.05 -0.06 -0.07  -0.08 -0.07QP28 Bit rate inc. (%) -0.86 -2.09 -1.57 -2.91 95.14 0.40 0.19  2.20 1.64 93.47 

PSNR inc.(db) -0.01 -0.05 -0.04 -0.05 -0.10 -0.09  -0.10 -0.09QP32 
Bit rate inc. (%) 0.27 -0.96 -0.58 -1.75

95.63 
1.68 1.59  3.06 2.54 

93.39 

PSNR inc.(db) 0.00 -0.06 -0.04 -0.05 -0.03 -0.07  -0.07 -0.06Avg. 
Bit rate inc. (%) -1.28 -2.60 -1.62 -2.66

92.53 
-0.23 -0.85  1.20 0.45 

91.61 
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