
PMRME: A PARALLEL MULTI-RESOLUTION MOTION ESTIMATION ALGORITHM AND
ARCHITECTURE FOR HDTV SIZED H.264 VIDEO CODING

Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang

Institute of Electronics

National Chiao-Tung University
HsinChu, Taiwan

{cclin, yklin, tschang}@twins.ee.nctu.edu.tw

ABSTRACT

The paper presents a hardware-efficient fast algorithm and
its architecture for large search range motion estimation
(ME) used in HDTV sized H.264 video coding. To solve the
high cost and latency in large search range case, the
proposed algorithm processes ME in parallel multi-
resolution levels instead of serial process in the previous
approach. This enables high data reuse for lower bandwidth
and low memory cost. Further combining with our previous
proposed mode filtering and bit truncation, the algorithm
only increases the bit rate within -0.58% and 3.06% and at
most 0.04dB and 0.07dB PSNR degradation for 720p and
1080p sequences respectively. The hardware
implementation can save up to 49.5% of area cost and 65%
of memory cost compared to the previous approach for large
search range to [-128, 127].

Index Terms— H.264, motion estimation, multi-
resolution

1. INTRODUCTION

MPEG-4 AVC/H.264 video coding [2] is the latest video
coding standard that provides good coding efficiency and is
widely adopted in emerging multimedia devices. In which,
the variable block size motion estimation (VBSME) and its
improved sub-pixel precision ME contributes a lot for
coding efficiency but also dominates the computational
loading of the whole encoding process. Thus VLSI
realizations of VBSME have been widely proposed to
speedup the process. However, most of them are only
applicable for SDTV size or below. For HDTV size
applications that requires large search range up to [-128,
127] or even larger, previous approaches will consume too
much area cost and computational cycles.

To support large size research range, many fast integer
ME algorithms have been proposed. However, most of them
are not suitable for hardware implementation due to nearly
prohibited memory bandwidth resulted from the poor data
reuse flow. To solve this problem, one promising approach

is the multi-resolution ME as one proposed in [1]. In [1],
they use three hierarchical levels for search and refine the
motion vector from the coarse level to the finest level.
However, this approach has several disadvantages for
hardware implementation. First, the motion vector found in
the higher level needs to be further refined in the lower level.
It means the search is a sequential process that will increase
the cycle counts, and decrease the hardware utilization and
throughput. Second, a full search range sized buffer is still
needed because the dependency between the three
hierarchical levels. It greatly increases the hardware costs
for large search range design and diminishes the benefits of
multi-resolution ME. Third, the required bandwidth is still
quite large due to poor data reuse of the refinement process.

To solve above problem, this paper proposes a parallel
multi-Resolution ME (PMRME) algorithm and its
architecture. The proposed algorithm uses three independent
levels for search. The first two levels with data subsampling
cover the large search range to find the rarely occurred large
search vector. These two levels have good data reuse by
fixing the searching center at (0, 0). On the other hand, the
third level without data subsampling covers the search range
with the most occurred MV. This level has the search center
at the motion vector predictor. The concept behind our
algorithm is the unequal distribution of motion vector that
most of them are near the motion vector predictor. Thus, a
fine search around the motion vector predictor can find the
most of motion vector while the rest of motion vector can be
found in the coarse search. With above approaches, we can
save at least 92.4% memory buffer compared with the
previous method. Besides, data within two out of three
memory buffers are highly reused, and thus can save about
64.8% of memory bandwidth.

The rest of the paper is organized as following. We first
introduce our algorithm in Section 2 and its architecture in
Section 3. The results and comparisons are presented in
Section 4. Finally, a conclusion is made in Section 5

2. THE PROPOSED ALGORITHM

2.1 Parallel Multi-Resolution ME (PMRME)

II ­ 3851­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

PMRME includes three levels and all of them are
independent to each other, as illustrated in Fig. 1. In the
coarsest level, level 2, the SR is the largest, [-128~124], and
centered on the original point (0, 0). This enables regular
memory reuse between successive MB processing. This
level uses the 16:1 sampling and thus we only choose the
16x16 mode (mode 1 in Table 1) since other modes will
contain too fewer pixels for SAD calculation.

In level 1, the SR is reduced to [-32 ~ +30] and also
centered on (0, 0) for the same reason as level 2. This level
uses the 4:1 sampling and thus we only choose the 16x16 to
8x8 mode (mode 1 to 4 in Table 1) since other modes will
contain too fewer pixels for SAD calculation.

In the finest level, level 0, the SR is set to [-8~+7].
However, unlike the other two levels with (0, 0) center, we
choose the predictive motion vector (MVP) as the center
due to its higher probability for final MV. Thus, we do not
subsample data in this level and thus enable search for all
variable block size modes.

In the three parallel levels, the level 2 provides a large
search range for high motion blocks with coarse precision.
It is useful for very high motion blocks, and can find a good
enough though approximate motion vector candidate. Also,
the level 1 can provide a medium search range but a finer
precision. The level 2 and level 1 are complementary to
each other. With these two large search levels, the algorithm
can rapidly converge for the motion search of the level 0 by
effects of MVP. If only the level 0 is used, it is difficult to
trace the high motion blocks because the MVP cannot
follow up the real motion effectively in this case.

2.2 Mode Filtering

To further reduce the complexity, we use our previously
proposed mode filtering method [1]. Thus, only two modes
in the integer ME stage will be passed to the fraction ME
stage to significantly reduce the fractional ME cycle.
Besides, the method also increases the overall ME
pipelining efficiency.

2.3 Bit Truncation

Two degrees of bit truncation [4] are used in our design. In
our analysis (as in Table 4), five bits precision is enough to
provide a good coding efficiency for the 720p sequences.
However, at least six bits is needed for the 1080p sequences
because of the very high definition characteristics. In our
analysis, five bits for 1080p will cause larger bit rate
increasing.

By using the bit truncation method, about 38% and 28%
hardware cost are saved for “5 bits precision” and “6 bits
precision” respectively.

 3. THE PROPOSED ARCHITECTURE

Fig. 2 shows the proposed architecture. A 16x16 current
block is shared for the three levels. The memory size and
bandwidth for three reference frame buffers are listed in
Table 2. The bit width of memory buffer of level 1 and level
2 are also truncated, while that of the level 0 is not. The
reason for this is that the level 0 data can be reused by the
following fraction ME hardware if the best motion vector
falls in the level 0, which can also save the bandwidth.

C
ur

re
nt

 M
B

16
:1

su

b-
sa

m
pl

e

4:
1

su
b-

sa
m

pl
e

1:
1

su
b-

sa
m

pl
e

16

Le
ve

l 2

re
fe

re
nc

e
fr

am
e

Le
ve

l 1

re
fe

re
nc

e
fr

am
e

Le
ve

l 0

re
fe

re
nc

e
fra

m
e

m
ux

m
ux

m
ux

Level 1 SAD module 0

Level 1 SAD module 1

Level 1 SAD module 3

Level 1 SAD module 2

Level 0 SAD module 0

8x8 SAD
tree 0

8x8 SAD
tree 1

8x8 SAD
tree 2

8x8 SAD
tree 3

4x4 SAD
tree 0

m
in

im
um

Se
le

ct
 2

 c
an

di
da

te
s

m
in

im
um

Level 2 SAD module 0

Level 2 SAD module 1

Level 2 SAD module 15

Level 2 SAD module 14

67 19

4

39 11

8

31 16

16

<<4

<<2

Fig. 2 the proposed architecture.

Pred MV

Center: (0,0)

Center: (0,0)

Center:
(pred_x ,pred_y)

Level 2
SR=[-128 ~ +124]

mode1

Level 0
SR=[-8 ~ +7]

mode1 ~ mode7

Level 1
SR=[-32 ~ +30]
mode1 ~ mode4

Fig. 1 the three level new multi-resolution algorithm.

Table 1 the mode type and its block size for H.264
Mode Block size

Mode 1 16x16
Mode 2 16x8
Mode 3 8x16
Mode 4 8x8
Mode 5 8x4
Mode 6 4x8
Mode 7 4x4

II ­ 386

In this architecture, all computations are decomposed as

the combinations of 4x4 blocks, denoted as “primitive
module”. This is the basic module to compute the SAD as
depicted in Fig. 3. With this, every level can be easily
implemented by regularly composed module. Thus, level 0
has 16 primitive modules respectively. For level 1 with 4:1
subsampling, only four primitive modules are needed for
one “level 1 SAD module” for one search point. To further
speedup the processing, we adopt four “level 1 SAD
module”. Thus, totally 16 primitive modules are used as that
in level 0. Similarly for level 2 with 16:1 subsampling, only
one primitive module is needed for one “level 2 SAD
module” for one search point. We also speedup the level 2
by 16 “level 2 SAD module” and thus have the same area
cost as level 0. The reason for such speedup to balance the
computation cycles for different levels. Thus, computations
for all levels can be done in 256 cycles.

The SADs generated from the SAD modules are further
summed up to generate the SAD of different block size.
Level 0 has the most complex summation trees for
combination of the seven kinds of block types. For the level
1, four “8x8 SAD tree” are used for combination of the

mode 1 to mode 4 block types. But in level 2, only
comparators and registers are needed to select the minimum
SAD cost. Finally, the selection module will choose the best
two SAD costs from different levels for the fractional ME
module.

4. EXPERIMENTAL RESULTS

Table 4 shows the simulation result for different parameters,
PARME only, PARME with mode filtering (PARME+MF),
PARME+MF with bit truncation. At last, we also test the
algorithm performance for high motion sequences by
skipping two frames.

The simulation environments are as following: No rate-
distortion optimization (RDO); sequence type IPPP and SR
is [-128, 127]. All of the simulation results are compared
with that of the Fast-Full-Search (FFS) Algorithm in JM9.0
[6]. The result in this table only shows the average
performance under different QPs due to the page limit. For
720p, the test sequence including: Stockholm, parkrun, and
shields. The frame rate is 50 and 50 frames are coded. For
1080p, the test sequence including: station2, rush_hour, and
sunflower. The frame rate is 25 and 100 frames are tested.
The 1920x1080p image is truncated to an image of
1920x1072 to fit the multiples of 16.
 The simulation shows the PMRME alone can achieve the
similar video quality as the FFS. However, the distortion is
larger under high OP because the blocky effect will be more
serious for high QP and mislead the subsampling method.
Further combining with MF, we can find that the bit-rate for
low QP case sometimes lower than the FFS with the penalty
of PSNR loss. If the truncation method is combined, the
performance is a little worse. For 720p sequences, it has
0.04dB PSNR loss but 1.62% of bite-rate decrease in
average. As for 1080p sequences, it has 0.07dB PSNR loss
and up to 1.20% of bit-rate increase in average. However,
with slightly quality loss, we can save a lot of hardware cost
as described in the previous section. For high motion
sequences simulated by 2 frame skipping, the proposed
design keeps the similar quality. It means the algorithm does
well even for high motion sequences.

In this table, the term “hit rate” means the percentages of
motion vector falls in layer 0. With this, the memory data of
level 0 can be directly reused by fraction ME and thus save
a lot of bandwidth. In our design, the hit rate is at least 87%,
and the higher QP will have higher hit rate and thus can
save more power and BW. In our analysis, the hit rate for
720p and 1080p is quite the same, so we conclude the
search range 128 is enough for the 720p and 1080p
sequence. However, the bit truncation method has stronger
impact for 1080p. As we can see, the bit truncation method
will lead to 1.20% bit-rate increasing for 1080p sequence.
The rate-distortion (RD) curves of 720p and 1080p
sequence are shown in Fig. 4 and Fig. 5. As we can see, the
RD curves are almost overlapped with that by FFS.

 Table 3 hardware cost comparison

 SR Cell
area(K)

Memory
(Kbyte)

Frequency
(MHz)

T.C. Chen [5] H:+-64
V:+-32 305 13.71 108

for 720p 154 4.8 Ours for 1080p
H:+-128
V:+-128 180.1 5.6 100

for 720p 49.5 % 65.0% Saving
for 1080p

41.0% 59.1%

Table 2 memory and bandwidth for different frame size
for 720p for 1080p Memory cost

buffer size BW(per MB) buffer size BW(per MB)
Level 0 (Kbyte) 0.992 0.992 0.992 0.992
Level 1 (Kbyte) 0.975 0.312 1.170 0.312
Level 2 (Kbyte) 2.8475 0.268 3.417 0.268
Total (Kbytes) 4.8145 1.572 5.579 1.572
Direct design 73.712 4.336 73.712 4.336
Saving (%) 93.46 64.8 92.43 64.8

SAD

C
ur0 4

SAD

+

SAD SAD

+

RefA 4

RefB 4

C
ur1 4

C
ur2 4

C
ur3 4

primitive module

+

Fig. 3 the primitive module

II ­ 387

The proposed design has been implemented and
synthesized. Table 3 shows the total hardware cost of our
design and comparison to other design. Our design can save
at least 40% of area costs and 60% of memory costs.

5. CONCLUSION

In this paper, we propose a parallel multi-resolution

algorithm and architecture of integer ME for H.264/AVC.
The algorithm uses PMRME, MF and bit truncation to
support large search range within 256 cycles. With data
reuse and parallel multi-resolution, we can save at least
92.43% of memory buffer and 64.8% of bandwidth. The
resulted hardware can save up to 49.5% of area cost and
65% of memory cost compared to the previous approach for
720P processing. With above features, the proposed design
is very suitable for larger search range application such as
HDTV in a more economical way.

6. REFERENCES

[1] C.C. Lin and et al,”A fast algorithm and its architecture for
motion estimation in MPEG-4 AVC/H.264 Video Coding”, Asia
Pac. Con. on Cir. and Sys. (APCCAS’06), pp.1250-1253, Dec. 06

[2] Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264/ ISO/
IEC14496-10 AVC), Mar. 2003

[3] Jae Hun Lee and Nam Suk Lee, “Variable block size motion
estimation algorithm and its hardware architecture for
H.264/AVC,” Int. Sym. on Cir. and Sys. (ISCAS’04). Vol. 3, pp.
741-4, May 2004

[4] Z.-L. He and et al,“Low-power VLSI design for motion
estimation using adaptive pixel truncation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 10, no. 5, pp. 669–678, Aug.2000

[5] T.C. Chen and et al, “Analysis and Architecture Design of
an HDTV720p 30 Frames/s H.264/AVC Encoder,” IEEE Trans.
Cir. Syst. Video Tech., vol. 16, no. 6, pp. 673–688, June 2006

[6] Joint Video Team Reference Software JM9.0, ITU-T

Fig. 5 The RD curve of 1080p sequence

Fig. 4 The RD curve of 720p sequence

Table 4 The simulation results
 Frame size 720p 1080p

PMRME+MF
(5 bits)

Skip 2 frame

PMRME+MF
(6bits)

Skip 2 frame QP PMRME PMRME+MF PMRME+MF
(5 bits)

 Hit rate (%)

PMRME PMRME+MF PMRME+MF
(6 bits)

 Hit rate (%)
PSNR inc.(db) -0.01 -0.02 -0.02 -0.02 0.00 -0.08 -0.09 -0.05QP12 Bit rate inc. (%) -3.53 -4.87 -2.97 -4.10 88.62 -2.14 -4.62 -3.00 -3.93 87.69

PSNR inc.(db) 0.00 -0.05 -0.03 -0.04 0.00 -0.07 -0.06 -0.06QP16 Bit rate inc. (%) -1.33 -2.56 -1.56 -2.38 90.41 -0.49 -1.09 0.47 -0.47 89.57

PSNR inc.(db) 0.01 -0.09 -0.07 -0.07 -0.01 -0.04 -0.04 -0.03QP20 Bit rate inc. (%) -0.94 -2.40 -1.38 -2.13 91.67 -0.44 -0.22 2.65 1.89 92.33

PSNR inc.(db) 0.00 -0.07 -0.06 -0.06 -0.03 -0.06 -0.06 -0.07QP24 Bit rate inc. (%) -1.26 -2.73 -1.63 -2.69 93.72 -0.40 -0.94 1.83 1.03 93.19

PSNR inc.(db) 0.00 -0.05 -0.04 -0.05 -0.06 -0.07 -0.08 -0.07QP28 Bit rate inc. (%) -0.86 -2.09 -1.57 -2.91 95.14 0.40 0.19 2.20 1.64 93.47

PSNR inc.(db) -0.01 -0.05 -0.04 -0.05 -0.10 -0.09 -0.10 -0.09QP32
Bit rate inc. (%) 0.27 -0.96 -0.58 -1.75

95.63
1.68 1.59 3.06 2.54

93.39

PSNR inc.(db) 0.00 -0.06 -0.04 -0.05 -0.03 -0.07 -0.07 -0.06Avg.
Bit rate inc. (%) -1.28 -2.60 -1.62 -2.66

92.53
-0.23 -0.85 1.20 0.45

91.61

II ­ 388

