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ABSTRACT 

The Embedded Target for TI TMS320C6000 DSP is a useful 
development tool, which can be used to generate executable code 
for a range of targets, from a set of Simulink model blocks.  In 
this paper we outline the process of code generation for the 
TMS320DM642 Evaluation Module (EVM) using a Hough 
transform algorithm.  This was computed using the forward 
Radon transform, evaluated using the central slice theorem, and 
involves a 2-D Discrete Fourier Transform (DFT), a rectangular to 
polar coordinate transformation, and a 1-D DFT.  This was 
implemented using Simulink model blocks together with custom 
blocks, which were written using the S-Function Builder.  The 
Embedded Target generates all the video capture and display 
routines required, so that the algorithm can be developed in 
Matlab and Simulink, before being tested on the EVM.  Problems 
and limitations with the Embedded Target are highlighted, and 
solutions and code profiling optimizations are proposed.

Index Terms— Digital signal processors, Hough transforms, 
Image processing, Radon transforms, Software prototyping. 

1. INTRODUCTION 

The Embedded Target for TI TMS320C6000 DSP [1] allows the 
development of signal and image processing algorithms on 
standard TI DSP hardware, such as the fixed-point 
TMS320DM642 Evaluation Module (EVM) from Spectrum 
Digital [2].  The Real-Time Workshop Embedded Coder [3] uses 
the Embedded Target to generate code from Simulink models, and 
creates a TI Code Composer Studio DSP/BIOS project to compile, 
execute and run the generated code on the target processor. 

The Simulink models are composed of several blocks from the 
Simulink library, the C6000lib libraries, and from the Signal 
Processing and the Video and Image Processing (VIP) blocksets.  
The C6000lib libraries form part of the Embedded Target for TI 
C6000 DSP, and contain the DM642 EVM video capture and 
display routines.  The Signal Processing and VIP blocksets 
provide block libraries for many signal and image processing 
operations.  However some of these functions are very basic, such 
as the Hough transform block from the VIP blockset, which only 
supports a Hough transform [4] on a binary image, using the 
parametric expression: r = x cos θ + y sin θ.

More complex algorithms, which are not available in the Signal 
Processing and VIP blocksets, can be composed from several 

other blocks.  This produces very inefficient code, since the Real-
Time Workshop Embedded Coder does not combine blocks very 
efficiently, and instead generates code segments for each block 
used, which are then linked together.   

Another way to implement complex algorithms is to write custom 
Simulink C S-Functions using the S-Function Builder.  This 
enables more efficient code to be produced, which can be easily 
profiled and optimized in the Code Composer Studio Integrated 
Development Environment (IDE).   

The algorithm can be tested in Simulink with inputs from an 
image or media file, with the results output to the workspace or 
screen for analysis.  Once the algorithm has been refined 
sufficiently, DM642 video capture and display blocks, or Real-
Time Data Exchange (RTDX) blocks, can be added to the model.  
For RTDX transfers the Link for Code Composer Studio [5] can 
be used to communicate with the target processor from within the 
Matlab environment.   

We have designed and constructed an Embedded Development 
System using the DM642 (figure 1).  This consists of a CCD 
camera, TFT display, and DM642 EVM, together with a Lithium 
Ion battery and suitable power conversion circuitry.  The EVM 
contains a 720MHz TMS320DM642 DSP [6], which has 16KB 
L1P and L1D program and data cache memories, 256KB 
configurable L2 cache/mapped memory, 32MB of external 
SDRAM and 4MB of non-volatile flash memory. 

Figure 1. DM642 Embedded Development System. 
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In this paper we outline the process of code generation using 
Simulink model blocks and custom S-Function blocks, which 
were written using the S-Function Builder.  A Hough transform 
algorithm was implemented using the forward Radon transform 
[7], evaluated using the central slice theorem [8].  This involves a 
two dimensional Discrete Fourier transform (DFT), a rectangular 
to polar coordinate transformation, and a 1-D DFT, to produce a 
sinogram in the Radon Space. 

The algorithm implemented [9] was originally developed using 
Matlab 4.2c.1, and redeveloped in Simulink using Matlab R2006a 
(7.2), with Code Composer Studio v3.1 SP1.  Due to bugs which 
were found in the Matlab provided Lcc C Compiler, C Mex files 
were compiled using Microsoft Visual C++ v6.0. 

2. RADON TRANSFORM SIMULINK MODEL 

Figure 2. Radon Transform Simulink model. 

Figure 2 shows the Radon Transform Simulink model.  Initially 
an 8-bit grayscale image of size 128x128 was used with a matrix 
viewer block to display results to the screen.  For code generation 
this was replaced with the DM642 capture and display blocks 
from the C6000lib DM642 Board Support library.  180 angular 
slices were taken between 0 and π to produce a sinogram of size 
256x180.   

The size of each block was made tunable, so that their sizes were 
determined by the parameters in the model, which were set up in 
the Simulink Model Explorer.  Reusable functions were created 
wherever possible, by storing code for several different operations 
within the block. 

The image was first zero padded and 2-D fftshifted, by swapping 
the first and third, and the second and fourth quadrants of the 
image, in S-Function Builder 1.  Zero padding the image 
improves the resolution of the resulting 2-D Fourier spectrum, and 
reduces the aliasing effects which arise from the rectangular to 
polar resampling used in S-Function Builder 5.   

 A 2-D FFT was then taken to produce complex data, which was 
stored in a structure containing interleaved 16-bit real and 
imaginary components in Q.15 format, (sfix16_En15 in Matlab 
fixed-point notation).  The bottom half of the result was 2-D 
fftshifted again in S-Function Builder 2, so that the zero-
frequency component was moved to the centre of the 2-D Fourier 
Spectrum.   

Since the original image is real its 2-D Fourier spectrum is 
symmetric about its origin, (diametric Hermitian symmetry), so it 
was only necessary to sample the top half of the 2-D Fourier 
spectrum.  This was resampled from rectangular to polar 
coordinates in S-Function Builder 5, using bilinear interpolation 
with precomputed look-up table data from S-Function Builder 3.  
The rest of the data was obtained by conjugate reflection of the 
resampled data about the zeroth frequency. 

The look-up table data was stored in Q16.15 format, 
(sfix32_En15 in Matlab fixed-point notation), and contains the 
Cartesian location of each polar sample point in the mapping.  
The sine and cosine values used were computed from linear 
interpolation of successive points in a fixed-point sine table. 

After resampling from Cartesian to polar coordinates, the 
resulting 1-D Fourier spectrum was filtered with a 1-D difference 
of Gaussian (DOG) filter [9-10], which was computed in S-
Function Builder 4, to edge enhance and improve the peak 
structure of the sinogram.  A 1-D FFT was then taken of the result 
to produce the sinogram.  This was 1-D fftshifted, by swapping 
the left and right halves of the image, and quantized to 8-bit 
resolution, in S-Function Builder 6. 

The look-up tables in S-Functions 4 and 5 were computed at each 
time step when the model was run, since there was no option to 
run the block only once at start up.  This can be fixed in the Code 
Composer Studio IDE after the model has been built.  

3. S-FUNCTION BUILDER 

The S-Function Builder consists of a dialog box with several tabs 
for setting up the parameters, the output and input ports, the 
location of any include files, and the algorithm, which is 
contained in a C wrapper function.  The S-Function Builder 
generates a Simstruct S-Function code file and a Real-Time 
Workshop Target Language Compiler (TLC) file, from the 
parameters and block properties which have been specified.  The 
S-Function Builder then uses the Matlab Mex command to 
compile and link the Simstruct S-Function code file and the C 
wrapper function into a dynamically loadable Matlab executable 
(MEX) file, for use in Simulink.  The Real-Time Workshop 
Embedded Coder also uses the C wrapper function with the TLC 
file to generate code for the DM642 EVM. 

The input and output port sizes, data types and complexity, were 
set up in the data properties tab, together with the parameters that 
are passed to the function.  However, the generated Simstruct S-
Function code for the block needed to be modified to provide 
correct support for complex fixed-point data types, and to enable 
the size of the ports to be specified in terms of the parameters. 
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The algorithm for the block was entered in a box in the outputs 
tab as a C wrapper function.  Pointers to the input and output 
ports, and the parameters, which have been specified in the data 
properties tab, are passed to the function, together with the width 
of the arrays containing the S-Function's inputs and outputs.  The 
S-Function Builder inserts a call to the C wrapper function in the 
mdlOutputs callback method in the generated Simstruct S-
Function code for the block.  This is called by Simulink at each 
simulation time step to compute the S-Function's output.   

The #IFDEF directive was used to distinguish between code for 
the Simulink model, (MATLAB_MEX_FILE), and code specific 
to the DM642.  When using the TI C64x DSP Library (DSPLIB) 
[11] and the TI C64x Image/Video Processing Library (IMGLIB) 
[12], the Programmer’s References provide functional C code, 
equivalent to the assembly code used in the functions, which can 
be used to model the functions in Simulink. 

For moving contiguous blocks of memory, the memove command 
was used for the Simulink model, and the DAT_copy2d command 
was used to transfer the data in blocks to the L2 SRAM using the 
enhanced direct memory access (EDMA) controller on the DM642 
[13].  The UNROLL and MUST_ITERATE pragma directives 
were also used, to allow the compiler to optimize loop unrolling, 
and to maximize the use of the data bus.   

4. CODE COMPOSER STUDIO TUNING 

When the model is built the Real-Time Workshop Embedded 
Coder uses the Embedded Target to create a Code Composer 
Studio DSP/BIOS project, and generate code from all the blocks 
in the model.  This is compiled together with the C wrapper files 
and any external files, which have been specified in the Real-
Time Workshop configuration options, to create a single 
executable common object file format (COFF) file, which is then 
downloaded and run on the EVM.   

The Real-Time Workshop Embedded Coder generates all memory 
statically, so that memory is allocated for each block in the model.  
Since the Embedded Target does not produce very efficient code, 
a lot of memory is allocated for intermediate variables, so the 
available memory can quickly run out.  The size of each block was 
also fixed, so the model needs to be rebuilt if the parameters are 
changed.   

All memory arrays which were generated by the Embedded Target 
were automatically aligned to 8-byte alignment boundaries, to 
achieve single instruction multiple data (SIMD) optimization, so 
that multiple operations can be combined together into a single 
instruction.  Other memory arrays can be manually aligned using 
the DATA_ALIGN and DATA_SECTION pragma directives. 

To analyze the performance of the algorithm, STS objects were 
initialized with the DSP/BIOS Configuration Tool [14], and 
STS_set and STS_delta calls were inserted between each section 
of code.  Table 1 shows the average processing time of each of the 
processing stages.  This takes about 237ms to process one 
128x128 8-bit grayscale image.  This is mainly due to the FFT 
blocks from the Signal Processing and VIP blocksets, which take 
about 222ms and are not optimized for the DM642. 

STS Task Time/ 
ms 

1 S-Function Builder 1 (uint2dfftshiftpad2.c)    6.39 

2 2-D FFT block (256x256)  152.82 

3 S-Function Builder 2 (cfix2dfftshift2.c)   2.05 

4 S-Function Builder 5 (cfixinterp2.c)   5.06 

5 1-D FFT block (256x180)  69.28 

6 S-Function Builder 6 (fixpt2uint8scale2.c)   1.66 

0 Total  237.27 

Table 1. DSP/BIOS timing data for a 128x128 image.   

The assembly language code produced by the Code Composer 
Studio compiler contains software pipeline information about how 
efficiently loops are pipelined, and how many of the processor’s 
instruction units are operating simultaneously.  By studying the 
assembly language code, inefficient processes can be identified 
and optimized by modifying the C code, or changing the compiler 
options to allow it to produce more efficient assembly language 
code.   

The code can be improved further by writing linear assembly 
code, or inlining intrinsic operators and assembly language code 
into the C code.  There are many C callable assembly optimized 
routines available in the TI C64x DSPLIB, which is available in 
the C6000lib C64x DSP library, and also in the TI C64x IMGLIB.  
Further code profiling and optimization steps are documented in 
the TMS320C6000 Programmer’s Guide [15].   

5. DM642 EVM OUTPUT 

Figure 3 shows the Radon transform of a 128x128 8-bit grayscale 
image, which was captured with a Sony CCD camera using the 
DM642 Embedded Development System shown in figure 1.  Since 
the video encoder on the EVM only supports 8-bit data, the output 
was quantized to 8-bit resolution in S-Function Builder 6, for 
display at 640x480.  

The image was first edged detected using a spatial domain Sobel 
filter.  Each pixel in the image maps to a sinusoid in Radon space, 
which intersect at points corresponding to the parametrisation of 
the lines in the image, and produces butterfly dispersions around 
each maximum point [16].  To detect these maxima points, the 1-
D Fourier spectrum can be bandpass filtered to attenuate both the 
low and high frequency components.  This produces a peak 
enhanced sinogram which can be thresholded to locate the 
maxima points in the sinogram.   

Figure 4 (a) shows the Radon transform of the original 8 bit 
grayscale image from figure 3.  This was filtered with a 1-D DOG
Filter [9-10], to produce the sinogram shown in figure 4 (b).  The 
edges of the image were detected causing spurious maxima 
points, which were reduced by subtracting the Radon transform of 
the average intensity of the image. 
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Figure 3. Radon transform of a Sobel edge detected 128x128 8-
bit grayscale image.   

                            (a)                                                             (b)                           

Figure 4. Effect of the filtering the Radon Transform of the 
original image from figure 3. 

6. CONCLUSIONS

In this paper we have outlined the process of code generation for 
the TMS320DM642 EVM using the Embedded Target for TI 
C6000 DSP.  We show how the Embedded Target can be used for 
rapid prototyping using a Hough transform algorithm.  This was 
implemented using the central slice theorem and involves a 2-D 
DFT, a rectangular to polar coordinate transformation, and a 1-D 
DFT.   

The algorithm was implemented using blocks from the Simulink 
library, the C6000lib libraries, and the Signal Processing and VIP 
blocksets.  The C6000lib libraries contain the DM642 EVM video 
capture and display routines, and other board support routines, 
together with optimized assembly language code in a C64x DSP 
library. 

Since the Real-Time Workshop Embedded Coder does not 
combine blocks very efficiently, complex algorithms were 
implemented using custom Simulink C S-Functions, which were 

written using the S-Function Builder.  Reusable functions were 
written wherever possible, by storing code for several different 
operations within the block. 

The generated code was profiled in the Code Composer Studio 
IDE using the DSP/BIOS tools to identify inefficient areas for 
optimization.  These optimizations can be implemented in the 
Code Composer Studio IDE, or in the S-Function Builder, using 
the #IFDEF directive to distinguish between code for the 
Simulink model, and code specific to the DM642. 
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