
A HOUGH TRANSFORM RAPID PROTOTYPING SYSTEM USING THE
MATLAB EMBEDDED TARGET FOR THE TI TMS320DM642 EVM

Cheyne Gaw Ho
MIG Development. Email: cheyneho@netscape.net.

ABSTRACT

The Embedded Target for TI TMS320C6000 DSP is a useful
development tool, which can be used to generate executable code
for a range of targets, from a set of Simulink model blocks. In
this paper we outline the process of code generation for the
TMS320DM642 Evaluation Module (EVM) using a Hough
transform algorithm. This was computed using the forward
Radon transform, evaluated using the central slice theorem, and
involves a 2-D Discrete Fourier Transform (DFT), a rectangular to
polar coordinate transformation, and a 1-D DFT. This was
implemented using Simulink model blocks together with custom
blocks, which were written using the S-Function Builder. The
Embedded Target generates all the video capture and display
routines required, so that the algorithm can be developed in
Matlab and Simulink, before being tested on the EVM. Problems
and limitations with the Embedded Target are highlighted, and
solutions and code profiling optimizations are proposed.

Index Terms— Digital signal processors, Hough transforms,
Image processing, Radon transforms, Software prototyping.

1. INTRODUCTION

The Embedded Target for TI TMS320C6000 DSP [1] allows the
development of signal and image processing algorithms on
standard TI DSP hardware, such as the fixed-point
TMS320DM642 Evaluation Module (EVM) from Spectrum
Digital [2]. The Real-Time Workshop Embedded Coder [3] uses
the Embedded Target to generate code from Simulink models, and
creates a TI Code Composer Studio DSP/BIOS project to compile,
execute and run the generated code on the target processor.

The Simulink models are composed of several blocks from the
Simulink library, the C6000lib libraries, and from the Signal
Processing and the Video and Image Processing (VIP) blocksets.
The C6000lib libraries form part of the Embedded Target for TI
C6000 DSP, and contain the DM642 EVM video capture and
display routines. The Signal Processing and VIP blocksets
provide block libraries for many signal and image processing
operations. However some of these functions are very basic, such
as the Hough transform block from the VIP blockset, which only
supports a Hough transform [4] on a binary image, using the
parametric expression: r = x cos θ + y sin θ.

More complex algorithms, which are not available in the Signal
Processing and VIP blocksets, can be composed from several

other blocks. This produces very inefficient code, since the Real-
Time Workshop Embedded Coder does not combine blocks very
efficiently, and instead generates code segments for each block
used, which are then linked together.

Another way to implement complex algorithms is to write custom
Simulink C S-Functions using the S-Function Builder. This
enables more efficient code to be produced, which can be easily
profiled and optimized in the Code Composer Studio Integrated
Development Environment (IDE).

The algorithm can be tested in Simulink with inputs from an
image or media file, with the results output to the workspace or
screen for analysis. Once the algorithm has been refined
sufficiently, DM642 video capture and display blocks, or Real-
Time Data Exchange (RTDX) blocks, can be added to the model.
For RTDX transfers the Link for Code Composer Studio [5] can
be used to communicate with the target processor from within the
Matlab environment.

We have designed and constructed an Embedded Development
System using the DM642 (figure 1). This consists of a CCD
camera, TFT display, and DM642 EVM, together with a Lithium
Ion battery and suitable power conversion circuitry. The EVM
contains a 720MHz TMS320DM642 DSP [6], which has 16KB
L1P and L1D program and data cache memories, 256KB
configurable L2 cache/mapped memory, 32MB of external
SDRAM and 4MB of non-volatile flash memory.

Figure 1. DM642 Embedded Development System.

II ­ 3811­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

In this paper we outline the process of code generation using
Simulink model blocks and custom S-Function blocks, which
were written using the S-Function Builder. A Hough transform
algorithm was implemented using the forward Radon transform
[7], evaluated using the central slice theorem [8]. This involves a
two dimensional Discrete Fourier transform (DFT), a rectangular
to polar coordinate transformation, and a 1-D DFT, to produce a
sinogram in the Radon Space.

The algorithm implemented [9] was originally developed using
Matlab 4.2c.1, and redeveloped in Simulink using Matlab R2006a
(7.2), with Code Composer Studio v3.1 SP1. Due to bugs which
were found in the Matlab provided Lcc C Compiler, C Mex files
were compiled using Microsoft Visual C++ v6.0.

2. RADON TRANSFORM SIMULINK MODEL

Figure 2. Radon Transform Simulink model.

Figure 2 shows the Radon Transform Simulink model. Initially
an 8-bit grayscale image of size 128x128 was used with a matrix
viewer block to display results to the screen. For code generation
this was replaced with the DM642 capture and display blocks
from the C6000lib DM642 Board Support library. 180 angular
slices were taken between 0 and π to produce a sinogram of size
256x180.

The size of each block was made tunable, so that their sizes were
determined by the parameters in the model, which were set up in
the Simulink Model Explorer. Reusable functions were created
wherever possible, by storing code for several different operations
within the block.

The image was first zero padded and 2-D fftshifted, by swapping
the first and third, and the second and fourth quadrants of the
image, in S-Function Builder 1. Zero padding the image
improves the resolution of the resulting 2-D Fourier spectrum, and
reduces the aliasing effects which arise from the rectangular to
polar resampling used in S-Function Builder 5.

 A 2-D FFT was then taken to produce complex data, which was
stored in a structure containing interleaved 16-bit real and
imaginary components in Q.15 format, (sfix16_En15 in Matlab
fixed-point notation). The bottom half of the result was 2-D
fftshifted again in S-Function Builder 2, so that the zero-
frequency component was moved to the centre of the 2-D Fourier
Spectrum.

Since the original image is real its 2-D Fourier spectrum is
symmetric about its origin, (diametric Hermitian symmetry), so it
was only necessary to sample the top half of the 2-D Fourier
spectrum. This was resampled from rectangular to polar
coordinates in S-Function Builder 5, using bilinear interpolation
with precomputed look-up table data from S-Function Builder 3.
The rest of the data was obtained by conjugate reflection of the
resampled data about the zeroth frequency.

The look-up table data was stored in Q16.15 format,
(sfix32_En15 in Matlab fixed-point notation), and contains the
Cartesian location of each polar sample point in the mapping.
The sine and cosine values used were computed from linear
interpolation of successive points in a fixed-point sine table.

After resampling from Cartesian to polar coordinates, the
resulting 1-D Fourier spectrum was filtered with a 1-D difference
of Gaussian (DOG) filter [9-10], which was computed in S-
Function Builder 4, to edge enhance and improve the peak
structure of the sinogram. A 1-D FFT was then taken of the result
to produce the sinogram. This was 1-D fftshifted, by swapping
the left and right halves of the image, and quantized to 8-bit
resolution, in S-Function Builder 6.

The look-up tables in S-Functions 4 and 5 were computed at each
time step when the model was run, since there was no option to
run the block only once at start up. This can be fixed in the Code
Composer Studio IDE after the model has been built.

3. S-FUNCTION BUILDER

The S-Function Builder consists of a dialog box with several tabs
for setting up the parameters, the output and input ports, the
location of any include files, and the algorithm, which is
contained in a C wrapper function. The S-Function Builder
generates a Simstruct S-Function code file and a Real-Time
Workshop Target Language Compiler (TLC) file, from the
parameters and block properties which have been specified. The
S-Function Builder then uses the Matlab Mex command to
compile and link the Simstruct S-Function code file and the C
wrapper function into a dynamically loadable Matlab executable
(MEX) file, for use in Simulink. The Real-Time Workshop
Embedded Coder also uses the C wrapper function with the TLC
file to generate code for the DM642 EVM.

The input and output port sizes, data types and complexity, were
set up in the data properties tab, together with the parameters that
are passed to the function. However, the generated Simstruct S-
Function code for the block needed to be modified to provide
correct support for complex fixed-point data types, and to enable
the size of the ports to be specified in terms of the parameters.

II ­ 382

The algorithm for the block was entered in a box in the outputs
tab as a C wrapper function. Pointers to the input and output
ports, and the parameters, which have been specified in the data
properties tab, are passed to the function, together with the width
of the arrays containing the S-Function's inputs and outputs. The
S-Function Builder inserts a call to the C wrapper function in the
mdlOutputs callback method in the generated Simstruct S-
Function code for the block. This is called by Simulink at each
simulation time step to compute the S-Function's output.

The #IFDEF directive was used to distinguish between code for
the Simulink model, (MATLAB_MEX_FILE), and code specific
to the DM642. When using the TI C64x DSP Library (DSPLIB)
[11] and the TI C64x Image/Video Processing Library (IMGLIB)
[12], the Programmer’s References provide functional C code,
equivalent to the assembly code used in the functions, which can
be used to model the functions in Simulink.

For moving contiguous blocks of memory, the memove command
was used for the Simulink model, and the DAT_copy2d command
was used to transfer the data in blocks to the L2 SRAM using the
enhanced direct memory access (EDMA) controller on the DM642
[13]. The UNROLL and MUST_ITERATE pragma directives
were also used, to allow the compiler to optimize loop unrolling,
and to maximize the use of the data bus.

4. CODE COMPOSER STUDIO TUNING

When the model is built the Real-Time Workshop Embedded
Coder uses the Embedded Target to create a Code Composer
Studio DSP/BIOS project, and generate code from all the blocks
in the model. This is compiled together with the C wrapper files
and any external files, which have been specified in the Real-
Time Workshop configuration options, to create a single
executable common object file format (COFF) file, which is then
downloaded and run on the EVM.

The Real-Time Workshop Embedded Coder generates all memory
statically, so that memory is allocated for each block in the model.
Since the Embedded Target does not produce very efficient code,
a lot of memory is allocated for intermediate variables, so the
available memory can quickly run out. The size of each block was
also fixed, so the model needs to be rebuilt if the parameters are
changed.

All memory arrays which were generated by the Embedded Target
were automatically aligned to 8-byte alignment boundaries, to
achieve single instruction multiple data (SIMD) optimization, so
that multiple operations can be combined together into a single
instruction. Other memory arrays can be manually aligned using
the DATA_ALIGN and DATA_SECTION pragma directives.

To analyze the performance of the algorithm, STS objects were
initialized with the DSP/BIOS Configuration Tool [14], and
STS_set and STS_delta calls were inserted between each section
of code. Table 1 shows the average processing time of each of the
processing stages. This takes about 237ms to process one
128x128 8-bit grayscale image. This is mainly due to the FFT
blocks from the Signal Processing and VIP blocksets, which take
about 222ms and are not optimized for the DM642.

STS Task Time/
ms

1 S-Function Builder 1 (uint2dfftshiftpad2.c) 6.39

2 2-D FFT block (256x256) 152.82

3 S-Function Builder 2 (cfix2dfftshift2.c) 2.05

4 S-Function Builder 5 (cfixinterp2.c) 5.06

5 1-D FFT block (256x180) 69.28

6 S-Function Builder 6 (fixpt2uint8scale2.c) 1.66

0 Total 237.27

Table 1. DSP/BIOS timing data for a 128x128 image.

The assembly language code produced by the Code Composer
Studio compiler contains software pipeline information about how
efficiently loops are pipelined, and how many of the processor’s
instruction units are operating simultaneously. By studying the
assembly language code, inefficient processes can be identified
and optimized by modifying the C code, or changing the compiler
options to allow it to produce more efficient assembly language
code.

The code can be improved further by writing linear assembly
code, or inlining intrinsic operators and assembly language code
into the C code. There are many C callable assembly optimized
routines available in the TI C64x DSPLIB, which is available in
the C6000lib C64x DSP library, and also in the TI C64x IMGLIB.
Further code profiling and optimization steps are documented in
the TMS320C6000 Programmer’s Guide [15].

5. DM642 EVM OUTPUT

Figure 3 shows the Radon transform of a 128x128 8-bit grayscale
image, which was captured with a Sony CCD camera using the
DM642 Embedded Development System shown in figure 1. Since
the video encoder on the EVM only supports 8-bit data, the output
was quantized to 8-bit resolution in S-Function Builder 6, for
display at 640x480.

The image was first edged detected using a spatial domain Sobel
filter. Each pixel in the image maps to a sinusoid in Radon space,
which intersect at points corresponding to the parametrisation of
the lines in the image, and produces butterfly dispersions around
each maximum point [16]. To detect these maxima points, the 1-
D Fourier spectrum can be bandpass filtered to attenuate both the
low and high frequency components. This produces a peak
enhanced sinogram which can be thresholded to locate the
maxima points in the sinogram.

Figure 4 (a) shows the Radon transform of the original 8 bit
grayscale image from figure 3. This was filtered with a 1-D DOG
Filter [9-10], to produce the sinogram shown in figure 4 (b). The
edges of the image were detected causing spurious maxima
points, which were reduced by subtracting the Radon transform of
the average intensity of the image.

II ­ 383

Figure 3. Radon transform of a Sobel edge detected 128x128 8-
bit grayscale image.

 (a) (b)

Figure 4. Effect of the filtering the Radon Transform of the
original image from figure 3.

6. CONCLUSIONS

In this paper we have outlined the process of code generation for
the TMS320DM642 EVM using the Embedded Target for TI
C6000 DSP. We show how the Embedded Target can be used for
rapid prototyping using a Hough transform algorithm. This was
implemented using the central slice theorem and involves a 2-D
DFT, a rectangular to polar coordinate transformation, and a 1-D
DFT.

The algorithm was implemented using blocks from the Simulink
library, the C6000lib libraries, and the Signal Processing and VIP
blocksets. The C6000lib libraries contain the DM642 EVM video
capture and display routines, and other board support routines,
together with optimized assembly language code in a C64x DSP
library.

Since the Real-Time Workshop Embedded Coder does not
combine blocks very efficiently, complex algorithms were
implemented using custom Simulink C S-Functions, which were

written using the S-Function Builder. Reusable functions were
written wherever possible, by storing code for several different
operations within the block.

The generated code was profiled in the Code Composer Studio
IDE using the DSP/BIOS tools to identify inefficient areas for
optimization. These optimizations can be implemented in the
Code Composer Studio IDE, or in the S-Function Builder, using
the #IFDEF directive to distinguish between code for the
Simulink model, and code specific to the DM642.

7. REFERENCES

[1] The Mathworks, The Embedded Target for TI TMS320C6000
DSP Platform User’s Guide. Version 3.0. The Mathworks,
Natick, Massachusetts, March 2006.
[2] Spectrum Digital, TMS320DM642 Evaluation Module
Technical Reference. Spectrum Digital, Stafford, Texas, August
2003.
[3] The Mathworks, Real-Time Workshop Embedded Coder
User’s Guide. Version 4.4. The Mathworks, Natick,
Massachusetts, March 2006.
[4] Hough, P.V.C., Method and means for recognising complex
patterns. U.S. Patent No. 3,069,654, 1962.
[5] The Mathworks, Link for Code Composer Studio Development
Tool’s User’s Guide. Version 2.0. The Mathworks, Natick,
Massachusetts, April 2006.
[6] Texas Instruments, TMS320DM642 Video/Imaging Fixed-
Point Digital Signal Processor Data Manual. Tech. Rep.
SPRS200B, Texas Instruments, Dallas, Texas, May 2003.
[7] J. Radon, “Über die bestimmung von funcktionen durch ihre
integralwerte längs gewisser mannigfaltigkeiten.” Ber. Sächs.
Akad. Wiss. Leipzig., vol. 69, pp.262-278, 1917.
[8] R.M. Mersereau, and A.V. Oppenheim, “Digital
reconstruction of multidimensional signals from their
projections.” Proc. IEEE, vol. 62, no. 10, pp. 1319-1338, 1974.
[9] C.G. Ho, R.C.D. Young, C.D. Bradfield, and C.R. Chatwin,
“A Fast Hough Transform for the Parametrisation of Straight
Lines using Fourier Methods,” Real-Time Imaging, vol. 2, pp.
113-127, 2000.
[10] D. Marr, and E. Hidreth, “Theory of edge detection.” Proc.
R. Soc. Lond. B., vol. 207, pp. 187-217, 1980.
[11] Texas Instruments, TMS320C64x DSP Library Programmer's
Reference. Tech. Rep. SPRU565A, Texas Instruments, Dallas,
Texas, April 2002.
[12] Texas Instruments, TMS320C64x Image/Video Processing
Library Programmer’s Reference. Tech. Rep. SPRU023A, Texas
Instruments, Dallas, Texas, April 2002.
[13] Texas Instruments, TMS320C6000 DSP Enhanced Direct
Memory Access (EDMA) Controller Reference Guide. Tech. Rep.
SPRU234, Texas Instruments, Dallas, Texas, July 2003.
[14] Texas Instruments, DSP/BIOS User's Guide. Tech. Rep.
SPRU423D, Texas Instruments, Dallas, Texas, April 2004.
[15] Texas Instruments, TMS320C6000 Programmer's Guide.
Tech. Rep. SPRU198G, Texas Instruments, Dallas, Texas, August
2002.
[16] V.F. Leavers, and J. Boyce, “The Radon transform and its
application to shape parametrisation in machine vision.” Image
and Vision Computing, vol. 5, no. 2, pp.161-166, 1987.

II ­ 384

