
ANALYSIS OF THE MATRIX PROCESSING (MxP) ARCHITECTURE

Lakshmi Girija1,4 Andreas S. Spanias2

 1SiRF Technology 2SenSIP Center, Dept. Electrical Engineering,
 Arizona State University

ABSTRACT
In this paper, we describe and evaluate a new DSP
architecture called the matrix processing (MxP™). MxP
exploits data parallelism using hardwired matrix operations
and instructions. The MxP matrix computation capabilities
are optimized for multidimensional transforms and filtering.
A detailed analysis of the MxP performance, in terms of
precision, execution time, and instruction memory
requirements, is presented. We focus particularly on matrix
and vector manipulations of the type embedded in video
processing standards, e.g., filtering, DCT, and motion
estimation. We present comparison tables of the
performance of the MxP with other widely used DSPs such
as the TI TMS320c55xTM, and the TI TMS320c64xTM.

Index Words: DSP architectures, video standards.

1. INTRODUCTION
Recent improvements in low-power and high-performance
VLSI architectures along with the emergence of several
compatibility standards created multiple new signal and
multimedia coding applications [1-5]. Typical applications
include smart camera phones, MPEG audio and video
players, set top boxes, PC video streaming, digital TV, etc.
Such signal processing applications are demanding in terms
of computation, memory and power consumption.
Examination of the ISO coding standards reveals that the
DCT [6], the wavelet transform [7], and motion estimation/
compensation functions [1] are key in several video
compression algorithms. Most processor architectures are
sequential in nature and hence accommodate these
algorithms by processing the data at high clock rates. Early
attempts in the 1990s to address high computational
requirements resulted in multicore designs [8], and
architectures with multimedia extended instructions (e.g.,
the Intel MMXTM). On the other hand, recently developed
DSP chips [9-11] employ large instruction words (e.g., the
TI TMS320c64xTM) that enable execution of multiple
instructions per cycle. In this paper, we describe and
analyze an alternative architecture paradigm that is based on
matrix-oriented computations. The matrix processing,
MxP™(3) architecture [12,13] performs signal processing
functions by exploiting matrix structures embedded in the
algorithms. Programming the MxP architecture involves
configuring and processing operations in vector or matrix

form much like one would do with MATLAB™. The
current version of the MxP can perform a 4x4 matrix
operation in a single cycle. This single-cycle 4x4 capability
may be exploited either to accommodate highly demanding
(high-MIPS) algorithms or to execute algorithms with
modest processing requirements at a lower power-aware
clock frequency. Our comparative simulations of the MxP
show that its matrix computation capability results in a
significant reduction in the machine cycle count. In
addition, the number of instructions and hence the program
memory requirements are reduced relative to other DSP
architectures. The paper organization is as follows. The
MxP architecture is presented next. One particular
realization examined is the embedded use of the MxP as a
co-processor. The MxP implementation of certain DSP
algorithms is discussed in Section 3. The MxP performance
characteristics are presented in Section 4. Concluding
remarks are given in Section 5.

2. THE MATRIX PROCESSING ARCHITECTURE

The current version of MxP was designed and tested as a
coprocessor to the 32-bit ARM RISC core, Figure 1.

Figure 1: The MxP as a coprocessor to the ARM core.

The MxP is capable of complementing other CPUs, such as
the ARMTM, by supporting matrix instructions and matrix
data types. The main CPU controls the MxP coprocessor
through the co-processor bus. The instructions are visible to
all processors on the coprocessor bus. In the case we
examined using the ARM processor, instructions are fetched

External
memory

Memory
Interface cache

Execution
Unit

Instruction
decoder

Instruction
sequencer

MxP™
coprocessor

ARM v4

II 3771424407281/07/$20.00 ©2007 IEEE ICASSP 2007

by the ARM, and instruction allocation/execution is based
on a conditional code status. The MxP also interprets
instructions simultaneously with the ARM and checks if the
instruction is valid. In that case, a handshake occurs and the
MxP accepts and executes the instruction. The MxP has 32
registers (MR0 - MR31) that are 64 bits wide. The MxP
register model is shown in Figure 2.

Matrix Config MC MC_1 MC_0
Matrix Status MS MS_1 MS_0

MR29
MR29_

1 MR29_0

MR28
MR28_

1 MR28_0

MR27
MR27_

1 MR27_0
…. …. ….
…. …. ….
…. …. ….
MR2 MR2_1 MR2_0
MR1 MR1_1 MR1_0
MR0 MR0_1 MR0_0

Figure 2: The MxP register model.

The Matrix Configuration (MC) Register (MR31) is a
special purpose register used to configure and control the
coprocessor. The Matrix Status (MS) is unaffected by data
processing operations in the current version of MxP. Both
MC and MS registers can be read from and written to using
a special set of transfer instructions. The MxP operates with
matrices as the basic data type, with each of the matrix
elements identified from the packed data types. Matrix data
types can be two-dimensional matrices of arbitrary size,
limited only by the span of the register file. The elements of
the matrices can be signed or unsigned nibble, byte, half-
word, word or double-word. The packing of the data in the
registers are always aligned to a power of 2, starting from
bit 0 of each of the 64 bit registers. Thus, each of the 32
registers can contain 16, 8, 4, 2, or 1 of N (Nibble), B
(Byte), H (Half-Word), W (Word) or D (Double) data
elements respectively. Data packing is performed in a
manner that avoids having data elements that would span
the register boundaries.

The MxP introduces a novel methodology for handling
data, that could be configured as matrix or vector thereby
providing a compact and mathematically structured format.
The MxP coprocessor has a load/store architecture, in the
sense that all the data processing (arithmetic and logical)
operations are done on the data elements stored in the
internal registers. There are separate instructions for
transferring data between external memory and MxP
registers, and also between ARM registers and MxP
registers. Note that even for the load/store data exchange
the source and target are structured as matrices, thus
providing more flexibility to handle (e.g. pack/unpack)

complex numbers and various other data types. The MxP
has three-operands Mx, My, and Md. The source matrix My
operates on the source matrix Mx and the result is stored in
the destination matrix, Md. Source matrices Mx and My are
formed by an ordered arrangement of the packed data
residing in the MxP register set.

3. SIGNAL PROCESSING ON THE MxP
In order to evaluate the performance of MxP, we categorize
algorithms into two types, i.e., those that can be converted
into ‘fast’ algorithms, such as, the Fourier and cosine
transforms. and those that are not easily parallelizable, such
as matrix multiplications used in color transformation,
filtering, decimation, interpolation etc. Operations such as
the DCT are highly parallelizable due to the cyclic nature of
the cosine basis functions. This degree of parallelism can be
exploited by processors that support either data level
parallelism or instruction level parallelism. The following
section describes the performance of the MxP for typical
signal processing operations that occur in standardized
video processing algorithms, e.g., image filtering, DCT and
a full search motion estimation using minimum of absolute
differences (MAD).

3.1. Matrix multiplication with the MxP
Matrix multiplications take place in graphics applications,
color space mapping, etc. The current version of the MxP
architecture supports single-cycle 4x4 multiplication.
Additional cycles are needed to prepare, load, and store the
data resulting in a total of 33 cycles for half word result and
43 cycles for a full word result. An 8x8 matrix half word
multiplication can be performed with eight 4x4
multiplications and four additions. The data is loaded such
that maximum reuse is possible without reloading.
3.2. Filtering
This section gives the MxP cycle count estimate for a 16-tap
FIR filter with 40 output samples. The input data is assumed
to be real valued. An FIR filter output samples y(n) can be
expressed as

1

0
() () ()

N

k

y n h k x n k

where x(n) are the input samples, N is the number of
coefficients and h(n) are the filter parameters. For a 16 tap
filter with 40 output samples, the above equation can be
expressed in matrix form as:

(0) (0) 0 0
(1) (1) (0) 0
... (2) (1) (0) 0 ... 0
...
...
... (15) (14) (0)
...
(39) (39) (38) (37)

y x
y x x

x x x

x x x

y x x x

(0)
(1)
...
...
...
(15)

.. (24)

h
h

h
x

II 378

For halfword data size, this filtering operation involves
40 cycles for data load, ten cycles for matrix configuration,
50 multiplications, and 23 cycles for storing the result back
to memory. The total number of cycles for this operation is
127 cycles. Note that sequential realization even on a chip
with a single-cycle MAC instruction requires 600 cycles for
this example excluding the loading, etc.

3.3. An 8x8 DCT using the MxP
The DCT is widely used in many image and video
compression algorithms due to its high energy compaction
capability. For example in JPEG and MPEG it can be shown
that most of the pixel energy is concentrated on the lower
spatial frequency components. DCT coefficients are also
highly de-correlated making it possible to encode and
reconstruct the original signal efficiently. Several fast
algorithms and architectures were developed for DCT
implementation. We investigated some of the fast DCT
algorithms for efficient implementation on the MxP. Due to
the 4x4 matrix multiplication capability of MxP, we chose
the decimation-in-frequency (DIF) DCT algorithm. Using
the DIF-DCT algorithm, an N point 1-D DCT can be
calculated using two half-size (N/2-point) DCTs. Similarly,
for the 2D case, one NxN point DCT can be performed
using four (N/2 x N/2) point DCTs. Figure 3 shows the flow
graph of a 1-D 8 point DCT. The 8x8 DCT used in the
MPEG standard can be realized efficiently using the DIF
algorithm with four 4x4 DCTs. The DCT implementation
on MxP involves decimation up to the first stage and then
transformation using the single-cycle 4x4 matrix
multiplication. The implementation of this algorithm on the
MxP involves twelve 4x4 matrix multiplies, five 4x4 matrix
adds, and the rest of the cycles are for data load/ store.

3.4. Motion estimation on the MxP
Correlation among adjacent frames in a video sequence is
exploited using motion estimation which estimates the
movement of the current block relative to a reference block.

Figure 3: Flow graph for 8-point DCT.

The current block is compared with the reference
blocks within a search window and the best match is chosen
as the prediction based on certain matching criterion such as
the sum of absolute differences (SAD). The motion
estimation process is shown in Figure 4.

Figure 4: Motion Estimation using full search (after [1]).

The prediction block selected is the one that has the
minimum SAD value (minimum absolute difference). The
MxP instruction set has a hardwired SAD instruction that
calculates the SAD values between two 4x4 blocks of data.
This process was implemented on the MxP. The size of the
current block was chosen to be 8x8 and the search window
size was chosen to be 12x12. This choice was based on an
efficient implementation using all the registers of MxP with
no intermediate data load/ store. A current block of size 8x8
and the search window of size 12x12 would require 5 SAD
operations in the horizontal direction and 5 SAD operations
in the vertical direction, a total of 25 SAD operations. Since
the maximum size of matrix operation performed by MxP is
4x4, the SAD of an 8x8 block is calculated as four partial
SADs. Thus the operation is repeated for both horizontal
and vertical directions and the best match is selected as the
motion vector for the current frame. The implementation of
this algorithm on the MxP involves 100 SAD operations, 18
sorting operations, and the remaining cycles are for data
load/ store and matrix configuration.

4. PERFORMANCE EVALUATION OF MxP
In this section, we provide the results of performance
analysis of MxP for filtering operation, DCT and maximum
amplitude difference (MAD) computation in terms of
machine cycles. We also provide of MxP with other widely
used DSPs from Texas Instruments comparisons in Figs. 5
and 6. Table 1 gives the MxP cycle count of matrix
multiplication, 16-tap FIR filter, 8x8 DCT and MAD
computation for an 8x8 block over a 12x12 search window.
The table also provides a comparison of MxP cycle count

11
162C

13
162C

15
162C

17
162C

4 point
DCT

4 point
DCT

X(0)

X(1)

X(2)

X(4)

X(6)

X(7)

X(5)

X(3)

x(0)

x(2)

x(1)

x(3)

x(7)

x(6)

x(5)

x(4)

-

-

-

-

II 379

with other widely used DSPs such as the Texas Instruments
(TI) TMS320c55x and TMS320c64x.

Table 1: Machine cycles
 MxP TMS320c64 TMS320c55
8x8 Multiply 146 283 464

16-tap FIR 127 285 400
8x8 DCT 125 126 238

MAD 203 194 711

From these examples, it is evident that in terms of machine
cycles the MxP performs quite well relative to the
TMS320c55x. For matrix multiplication and filtering, the
MxP cycle count is lower than that of TMS320c64x. On the
other hand for the DIF DCT, both the MxP and the
TMS320c64x have comparable performance. Table 2 and
Figure 6 shows code size comparisons for the DCT and the
MAD computations. It can be seen that the MxP performs
these tasks with reduced code size. Reduced code size
results in significant reduction of onchip program memory.

5. CONCLUSIONS
In this paper, we presented and evaluated the MxP
architecture. Comparative results were given for select
signal and video processing applications. In particular, the
MxP performance was compared against the widely used TI
DSPs, namely the TMS320c64x and the TMS320c55x.
Comparison results in terms of machine cycles and code
size favored the MxP™. The code size for the MxP proved
to be more compact than the other DSPs resulting in
reduced instruction fetches. The reduction in instruction
fetches and the lower overall clock can be exploited for low
power realizations on the MxP.

Machine cycle comparison

0
100
200
300
400
500
600
700
800

8x8 Matrix
Multiply

16-tap FIR
filter

8x8 DCT MAD

Algorithm

M
ac

hi
ne

 c
yc

le
s

MxP™
TMS320c64x
TMS320c55x

Figure 5. Machine cycle comparison.

Table 2: Code size in bytes
 MxP TMS320c64 TMS320c55

Matrix Multiply 84 416 215
16 tap FIR 140 544 107
8x8 DCT 88 976 480

MAD 432 788 1080

Code Size comparison

0
200
400
600
800

1000
1200

Matrix
Multiply

16 tap FIR
filter

8x8 DCT MAD

Algorithm

C
od

e
si

ze
 in

 b
yt

es

MxP™
TMS320c64x
TMS320c55x

Figure 6. Code size comparison.

6. REFERENCES
[1] M. Ghanbari, Standard codecs: Image compression to
advanced video coding, The IEE Press, London, 2003.
[2] M. Vrhel, E. Saber, H. Trussell, “Color Image Generation &
Display Technologies”, IEEE SP Mag., Jan 2005.

[3] A.S. Spanias, "Speech Coding: A Tutorial Review,"
Proc. IEEE, Vol. 82, No. 10, pp. 1441-1582, Oct. 1994.
[4] T. Painter and A. Spanias, “Perceptual Coding of Digital
Audio,” Proc. IEEE, pp.451-513, Vol. 88, No.4, Apr 2000.
[5] A. Spanias, T. Painter, V. Atti, Audio Signal Processing
and Coding, Wiley, ISBN:0-471-79147-4, March 2007.

[6] P. Yip, and K. R. Rao, “The decimation-in-frequency
algorithms for computing the discrete cosine transform,”
Circuits, Systems and Signal processing, pp. 4-19, 1988.
[7] R.M. Rao and A.S. Bopardikar, Wavelet Transforms:
Introduction to Theory and Applications, Addison-Wesley
Longman, Reading, MA, 1998.
[8] A. Spanias, M. Deisher, P. Loizou+, G. Lim+, B. Mears, "A
New Highly Integrated Architecture for Speech Processing and
Communication Applications," ITJ, pp. 41-56, Spring 1994.

[9] SPRU422H, TMS320c55x DSP Programmer’s
Reference, October 2004.

[10] SPRU565H, TMS320c64x DSP Programmer’s
Reference, October 2003.

[11] SPRU037C, TMS320c55x Image, Video processing
Programmer’s Reference, January 2004.
[12] MxP Architecture, Rev 0.1.0, Doc. No. GS\ EN\PR\
DE\2004\020, Aug. 2004, G4 Matrix Tech. Inc. (formerly
GemTech Solutions (P)), Thiruvananthapuram, India.

[13] Apparatus and method for Matrix Data Processing, G.
Nair, US Patent No. 6,944,747, Sept. 13, 2005.

3 - TM (trade mark) of MxP belongs to G4 Matrix Tech. Inc. TM of TI
TMSxxxx.. belongs to Texan Instruments Inc., TM on MMX belongs to
Intel Corp., and TM on MATLAB belongs to The Mathworks.

4. L. Girija performed this work as a graduate research assistant, as part of
her Masters degree at ASU. She is currently with SiRF Technology.

II 380

