
TIME SERIES MODELING BASED POWER AND PERFORMANCE SCALING FRAMEWORK
Moinul H. Khan, Yu Bai, Bin Xiao, Priya N. Vaidya members IEEE

ABSTRACT
This paper enhances a software based framework to dynamically scale
power and performance with high accuracy in a resource limited
embedded system, like cellular phones and PDAs. Key challenges for
such a framework are accurate forecasting of dynamic resource
demands inherent in the workloads. In this paper we describe three
innovative methods: (1) smart forecast method based on linear and
non-linear filtering models; (2) policy decision based on high fidelity
memory and computation characterization; and (3) adaptive sampling
period to adapt to dynamic changes in the workloads. Power and
performance framework driven by the proposed algorithms reduces
power consumption thus improving battery lifetime for the end-user.

Index/ Key Words – System Modeling, Embedded Multimedia, Low
Power Multi-media

1. INTRODUCTION

Next generation cellular phones and PDAs face stringent power and
performance requirements. In order to take advantage of dynamic
voltage and frequency management, software driven adaptive power
management methods are emerging as the key to performance and
power scaling [1, 2]. An adaptive power management technique was
proposed for Intel XScale™ Microarchitecture based platforms, which
dynamically characterizes executing workloads based on system level
events and adapts frequency and voltage so as to save power dissipation
[3]. Figure 1 shows the overall framework [3] for embedded software
based power management framework. The framework is composed of
two basic components: (1) Profiler; (2) Policy Manager. The profiler is
responsible for probing the system, collecting the statistics from
performance monitoring unit and operating system and making them
available to the policy manager. Then the policy manager uses these
inputs and optimally chooses suitable system operating point (including
core, bus, memory frequencies and processor state) and even different
power modes to save power while still satisfying the application’s
dynamic needs. We define the operating point as:
OP = {PM (State/Mode), f (Freq), V (Voltage)}.

Figure 1: Architecture of the Framework [3]

The effectiveness of the framework relies on the following factors, the
observability of different events in the system, being able to track the
changes in the resource demand and utilization, being able to accurately
predict the future resource demand, and being able to decide the
operating point of the device. Using the framework, we seek to improve
the solution provided in [3] by improving all areas. In this paper, we
present three new schemes to improve accuracy and efficiency in
performance and power scaling to significantly extend the whole
framework’s effectiveness in terms of power savings and performance
satisfaction. The Intel® PXA27X processor [4], as our test target, is a
highly integrated System-on-a-Chip (SoC) targeting wireless and
handheld platforms, featuring Intel® XScale® microarchitecture. To
meet the power and performance scaling challenges, system on-chip
solutions for handheld devices, such as PXA27X, Intel® XScale™
Microarchitecture based wireless application processor, deploys two key
technologies: (1) dynamic voltage/frequency control of the core,
interconnect, and memories, and (2) multiple power modes, covering
Run, Idle, Deep Idle, Standby, Sleep, and Deep Sleep.

2. PROPOSED IMPROVEMENT SCHEMES

The behavior of an application is dynamic and based on the content
being processed by the application, user inputs, and etc. Assuming that
the application is slow varying compared to the sampling rate of the
performance profiler, the paper [3] proposed to use the application’s
resource usage in the current sampling period to be the same as that in
the previous sampling period. We believe we can extend the prediction
capabilities using many known statistical signal processing techniques
such as moving average as well as auto regressive modeling. Workload
behaviors can be usually represented by (a) core instructions
consumption, (b) memory transactions, and (c) other resource usages.
From an optimal operating point adjustment perspective, we need to
consider the core and memory in greater detail as it consumes the bigger
share of the overall power budget. The prediction and control is an
intrusive method. In order to reduce the intrusion, we also adopted an
adaptive sampling period selection. Based on the prediction, the
adjustment of the frequency and voltages are performed. We believe a
better model of performance is required to ensure that the system’s
future operating point is appropriate for the predicted resource forecast.
We adopted a finer modeling approach for the same. The following
sections describe the proposed improvements in all three areas, specially
focusing on the prediction methods.

2.1 Prediction Algorithms

In this paper, we elaborate two methods of dynamically predicting the
workloads based on linear and non-linear filtering and also auto-
regressive models. Certain simplifications were made in-order to ensure
that prediction cost is minimal and does not compromise the real-
timeliness of the control mechanism.

2.1.1 Prediction Using Moving Average (MA) Model

In this case, we model system usage demands being a Moving-Average
process, where the demand for resource utilization at nth probing
window is a weighted sum of the same over last N windows. Let us

II 3731424407281/07/$20.00 ©2007 IEEE ICASSP 2007

define][ˆ nWR as the prediction of demand or usage of a resource R at

the nth probing window,
=

-=
N

i
RRR inEianW

1

][][][ˆ ; where][iER is the

prediction error at the window i. For a simplified model we can have

]1[][][--= iWiWiE RRR .][iaR is the coefficient of

prediction. At the end of each probing window, the frequency is
adjusted based on the demand forecast of the respective resource. The
frequency forecast is considered directly proportional to the demand
forecast. Thus, at each probing window, the adjustment to the frequency
is done as follows:

]1[][][][
1

---=D
=

nfinEicnf c

N

i
ccc a

]1[],[],[][
1

---=D
= =

nfjinEjicnf b

M

j

N

i
bbb b

]1[],[],[][
1 1

---=D
= =

nfjinEjicnf m

M

j

N

i
mmm g

Here gba ,, are the proportional constants. For fb and fm adaptation,

demands for the other resources are also considered and hence the
second summation over M number of resources. In this paper, we study
different models to determine {C}, gba ,, and different order of

history N.

2.1.2 Prediction Using Auto-Regressive (AR) Model

The operating frequency is a three number triplet: f = {fc, fb, fm},
representing core, bus, and memory frequencies, respectively. We
model system usage demands being an auto-regressive process, where
the demand for resource utilization at nth probing window is a weighted

sum of the same over last N windows. Let us define][ˆ nWR as the

prediction of demand or usage of a resource R at the nth probing

window,
=

-=
N

i
RRR inWicnW

1

][][][ˆ ; where][iWR is the observed

demand and][icR is the coefficient of prediction. At the end of each

probing window, the frequency is adjusted based on the demand
forecast of the respective resource. The frequency forecast is considered
directly proportional to the demand forecast. Thus, at each probing
window, the adjustment to the frequency is done as follows:

]1[][][][
1

---=D
=

nfinWicnf c

N

i
ccc a

]1[],[],[][
1

---=D
= =

nfjinWjicnf b

M

j

N

i
bbb b

]1[],[],[][
1 1

---=D
= =

nfjinWjicnf m

M

j

N

i
mmm g

Here as stated in the previous MA model description gba ,, are the

proportional constants. For fb and fm adaptation, demands for the other
resources are also considered and hence the second summation over M
number of resources. In this paper, we study different models to
determine {C}, gba ,, and different order of history N. For ARMA

modeling the frequency adjustment is as follows:

]1[][][''][][][
11

---+-=D
==

nfinEicinWicnf c

N

i
cc

N

i
ccc aa

]1[],[],[''],[],[][
11

---+-=D
= == =

nfjinEjicjinWjicnf b

M

j

N

i
bb

M

j

N

i
bbb bb

]1[],[],[''],[],[][
1 11 1

---+-=D
= == =

nfjinEjicjinWjicnf m

M

j

N

i
mm

M

j

N

i
mmm gg

The appropriate {c}, {c’}, },,{ gba and }',','{ gba are to be

derived dynamically or through some predefined methods.

2.1.3 Coefficient Derivation and Selection

The accuracy and hence the effectiveness of the control relies on the
right selection of the prediction coefficients. Determining these
coefficients requires complex computation, which will make the
dynamic prediction intrusive and will pose an extra overhead. So we
simplified AR, ARMA and MA methods to have predefined
coefficients. Also, for lower order of prediction model even certain non-
linear filtering methods are viable.

For MA models, we adopted three variants of the prediction methods:
(a) equal weight moving average, (b) linear prediction, and (c) median
filtering. For two different workloads (MP3 playback and MPEG4
decoding), Figure 2 shows improvement of accuracy based on different
prediction methods. It covers three prediction orders, i.e., N = 1, 2, and
3. Interestingly, moving average and median schemes perform much
better than linear estimate scheme. Furthermore, median scheme error is
extremely low even with the lowest prediction order, 1. If considering
both its simplicity and effectiveness, the median scheme is excellent to
forecast audio and video workloads. Please note that in this experiment,
for audio workload, 128 kbps bit stream of 44.1 KHz stereo MP3
playback is considered. For video workload, 384 kbps MPEG4 video
with akiyo and coastguard clips are considered.

Prediction Accuracy for Video and Audio
Workload

5.0

10.0

15.0

20.0

25.0

1 2 3

Order of Prediction

S
ta

nd
ar

d
D

ev
 o

f
P

re
di

ct
io

n

Moving Average-Audio Linear Estimation-Audio

Median-Audio Moving Average-Video

Linear Estimation-Video Median-Video

Figure 2: Prediction Error of Three Models for Audio and Video
Playbacks

More accurate prediction of the workload demands can easily translate
to running the core, bus and memory sub-system at the correct
frequencies and not burn any extra power or pay performance penalty.
Instead of picking a single prediction model, a hybrid approach can also
be adopted.

For AR and ARMA models different methods can be adopted. We
implemented 4 different configurations. The configurations are as
follows: “Configuration a” represents equal weights for MA samples
and median operation of the AR samples. “Configuration b” represents
equal weights for MA samples and AR samples. “Configuration c”
represents median filtering on both MA and AR samples.
“Configuration d” represents reverse of configuration b. Figure 3 shows

II 374

how the prediction error changes between different configurations for
an audio workload. It can be seen that for different configuration the
prediction errors varies.

Prediiction Error for Different AR models

0

10

20

30

40

50

60

70

80

90

Config a Config b Config c Congig d

MP3 Workload

P
re

di
ct

io
n

E
rr

or
 (

V
ar

ia
nc

e)

Figure 3: Prediction Error of Different AR Model Configurations
for an Audio Workload

2.2 Adaptive Sampling Period

Naturally, some applications change resource requirements at a fast
pace, but others do not. Therefore, using a fixed-size probing and
decision window cannot meet different applications’ needs. The
framework adopts three adaptation methods for sampling periods: (1)
linear adaptation (LILD-Linear Increase and Linear Decrease) and (2)
linear increase-exponential decrease (LIED) of the sampling period (3)
linear increase and direct decrease (LIDD). If the prediction error goes
up, the sampling period is reduced (linearly or exponentially or reset
back to the initial conservative value) and when the prediction error
reduces or stabilizes, the sampling period is increased. This way, the
scaling technique is more flexible and faster to detect the application’s
dynamic needs so as to seek more chances to reduce more power
dissipation and on the other hand avoid possible performance hazards
happening momentarily.

2.3 Memory/Computation Characterization

The characterization algorithm uses the predicted resource demands by
the application. For communication fabric demands and memory
demands, the similar prediction would hold true. However, the demand
forecast can be better understood by classifying if the application is
memory bound or computation bound. In terms of deciding the
operating point for the next time window, the current nature of the
application (memory bound or compute bound) can be taken into
account. If an application is identified as a compute bound, the core
frequency change is more important and effective than the memory
frequency change and opposite for a memory bound case. The frame
work is adopting characterization mechanism described in [5]. Based on
the memory operations, number of instructions retired etc. the
characterization model decomposes the number of cycles consumed in a
window into computation and memory cycles. The model also identifies
if the memory cycles are throughput related or latency related. Based on
the analysis, operation point selection can be actuated.

Figure 4 gives an example how the memory model breaks down
execution cycles into memory and compute components for an MPEG4
decoding application. It also shows how the memory and computational

composition changes with memory settings and the core frequency.
More analysis and conclusion can be found in the paper [5].

Currently we are measuring the effectiveness of the model in terms of
actuating the operating point predicted by the prediction model.

100 200 400 600 100 200 400 600
Core Frequency (MHz)

T
im

e
of

 D
ec

od
in

g

Computational Time Memory Time

0KB L2 Cache 256KB L2 Cache

Figure 4: MPEG4 Simple Profile Decoder Composition with
Various CPU Frequencies and L2 Cache On/Off

3. RESULTS

We propose a goodness metric based on energy-delay product to
compare different approaches. The goodness metric is defined as
follows:

·
WindowsAll

apap ffpenaltyePerformancffpenaltyPower 2)),(_(),(_

Here, fp = predicted frequency requirement and fa = actual frequency
requirement at an instant. Table 1 provides the definition for
performance penalty and power penalty.

Table 1: Definition of Goodness Metric for Different Cases

Power Penalty Performance Penalty

ap ff >
)(

)(

a

p

fpower
fpower

a

p

f
f

-

ap ff = 0 0

ap ff <
0

p

a
f

f

3.1 Goodness Comparison for Prediction Model

Based on the penalty computation proposed above, we measured the
performance, power and prediction errors so that a goodness metric can
be compared between different prediction approaches. Table 2
compares different MA models for the audio application. It can be seen
that the equal weight moving average prediction method performs the
best for the Energy Delay based goodness factor as proposed earlier.

Similarly, we compared the moving average prediction method with the
ARMA model configurations (Config “a” to “d”, definitions of the
configuration can be found Section 2.1.3) in Table 3. It appears that
configuration “c” performs the best in terms of the ED goodness metric.

The improvement of the ARMA model can be attributed to the reduced
prediction error for the ARMA/AR models. However, we also found
that for the audio applications, some of the AR/ARMA models perform

II 375

equally or worst compared to the MA model. We are currently
investigating the non-intuitive aspects. For the chosen configurations,
we are currently measuring the power of the system.

Table 2: Performance and Power Penalty for Different Prediction
Methods (Goodness Metric) MA Adaptive Approach1

Prediction Order
Model

Metric 1 2 3 4

Prediction Error 1226 718 500 570

Power Penalty 12 8 6 9
Moving
Average

Performance Penalty 855 376 142 153
Prediction Error N/A 4060 3737 1205
Power Penalty N/A 24 14 12 Linear Estimate
Performance Penalty N/A 80000 617 569869
Prediction Error N/A 722 743 752
Power Penalty N/A 8 8 9 Median Filtering
Performance Penalty N/A 378 426 273

Table 3: Comparison of a MA Model with Different Configurations
of AR Model

Stream Metric MA Config a Config b Config c Config d

Pred Error 123.36 189.69 162.18 237.72 178.64
Power 1.82 2.14 2.01 2.53 2.12

akiyo @
104MHz

Performance 8.88 13.00 11.14 36.71 11.57
Pred Error 17.11 17.96 19.90 15.72 16.59
Power 0.95 1.25 1.41 0.26 1.29

akiyo @
312MHz

Performance 5.54 5.84 5.04 6.33 5.90
Pred Error 74.78 103.71 95.27 146.44 92.03
Power 0.85 1.07 1.19 0.65 1.14

coastguard
@ 104
MHz Performance 0.92 1.11 1.21 0.67 1.19

Pred Error 111.71 137.29 128.33 133.81 130.06
Power 1.32 1.47 1.42 1.20 1.46

coastguard
@ 312
MHz Performance 1.36 1.42 1.43 1.19 1.46

Pred Error 5.72 5.71 7.31 4.65 5.57
Power 0.58 1.01 1.29 0.12 1.20

coastguard
@416
MHz Performance 0.38 0.95 1.10 0.10 1.07

3.2 Sample Rate Adaptation

Figure 5 shows how four different sampling window size adaptive
schemes work for the audio workload. The “origin” scheme is to have a
fixed-size sampling window. The “LILD” scheme is to linearly increase
and decrease the sampling window size as needed. The “LIED” scheme
is to linearly increase while exponentially decrease the sampling
window size. The “LIDD” scheme is to predefine a minimal window
size 2 and then linearly increase the window size, but shrink to the
minimal window size once a down-side adaptation is determined.
Clearly, “LILD”, “LIED”, and “LIDD” are detecting the same trends in
the workload. “LIDD” does the fastest response and resets the window
size. “LILD” is the lowest one, which might miss the opportunities to
save more power or catch up performance degradation. To be
conservative and keep the fast response speed, the “LIED” and “LIDD”
schemes are recommended.

4. CONCLUSION

This paper is intended to enhance a software framework based on Intel®
XScale™ Microarchitecture technology, to adapt system resources and
frequencies on the fly to meet different applications’ dynamic
requirements and as a result to reduce power dissipation. We propose
three novel techniques that will help predict adapt to system behaviors

1
Lower the number better. The numbers represent ratios and are unitless.

2
 In this experiment, the minimal window size is set to be the window size in the

“origin” scheme.

with high accuracy and therefore save as much as possible power
meanwhile maintaining performance. Experiments currently show that
higher order MA and Median prediction perform the best in terms of the
goodness. AR and ARMA modeling show even higher improvements
for video workloads. Memory modeling adaptive windowing shows
promise for further optimization. Current results recommend adoption
of LIED method of sampling window adjustment.

Sampling Window Size Adaptation

0

1000

2000

3000

4000

5000

6000

0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 3.5E+05 4.0E+05 4.5E+05

Time (Cycles)

S
am

pl
in

g
W

in
do

w
 S

iz
e

origin

lild

lied

lidd

Figure 5: Sampling Window Variation with the Time for Four
Different Window Size Adaptations

REFERENCES

[1] Y. Shin, K. Choi, and T. Sakurai, “Power Optimization of Real-
Time Embedded Systems on Variable Speed Processors”, Proceedings
of the International Conference on Computer-Aided Design, 2000

[2] Oman S. Unsal and Israel Koren, “System-Level Power Aware
Design Techniques in Real-time Systems”, Proceedings of the IEEE,
Vol. 91, July 2003

[3] Priya N. Vaidya, Moinul H. Khan, Bryan Morgan, and Premanand
Sakarda, "System Level Adaptive Framework for Power and
Performance Scaling on Intel® PXA27X Processor", International
Conference on Acoustics, Speech, and Signal Processing, Philadelphia,
PA, March 2005

[4] Intel® PXA27X Application Processor Architecture Reference
Manual

[5] J. Bao, B. Xiao, P. Vaidya, Y. Bai, "A Memory Characteristic Study
of Video Applications in Embedded Systems”, Picture Coding
Symposium, April 2006

II 376

