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ABSTRACT 
This paper enhances a software based framework to dynamically scale 
power and performance with high accuracy in a resource limited 
embedded system, like cellular phones and PDAs. Key challenges for 
such a framework are accurate forecasting of dynamic resource 
demands inherent in the workloads. In this paper we describe three 
innovative methods: (1) smart forecast method based on linear and 
non-linear filtering models; (2) policy decision based on high fidelity 
memory and computation characterization; and (3) adaptive sampling 
period to adapt to dynamic changes in the workloads. Power and 
performance framework driven by the proposed algorithms reduces 
power consumption thus improving battery lifetime for the end-user. 

Index/ Key Words – System Modeling, Embedded Multimedia, Low 
Power Multi-media  

1. INTRODUCTION

Next generation cellular phones and PDAs face stringent power and 
performance requirements. In order to take advantage of dynamic 
voltage and frequency management, software driven adaptive power 
management methods are emerging as the key to performance and 
power scaling [1, 2]. An adaptive power management technique was 
proposed for Intel  XScale™ Microarchitecture based platforms, which 
dynamically characterizes executing workloads based on system level 
events and adapts frequency and voltage so as to save power dissipation 
[3]. Figure 1 shows the overall framework [3] for embedded software 
based power management framework. The framework is composed of 
two basic components: (1) Profiler; (2) Policy Manager. The profiler is 
responsible for probing the system, collecting the statistics from 
performance monitoring unit and operating system and making them 
available to the policy manager. Then the policy manager uses these 
inputs and optimally chooses suitable system operating point (including 
core, bus, memory frequencies and processor state) and even different 
power modes to save power while still satisfying the application’s 
dynamic needs. We define the operating point as: 
OP = {PM (State/Mode), f (Freq), V (Voltage)}.

Figure 1: Architecture of the Framework [3]

The effectiveness of the framework relies on the following factors, the 
observability of different events in the system, being able to track the 
changes in the resource demand and utilization, being able to accurately 
predict the future resource demand, and being able to decide the 
operating point of the device. Using the framework, we seek to improve 
the solution provided in [3] by improving all areas. In this paper, we 
present three new schemes to improve accuracy and efficiency in 
performance and power scaling to significantly extend the whole 
framework’s effectiveness in terms of power savings and performance 
satisfaction. The Intel® PXA27X processor [4], as our test target, is a 
highly integrated System-on-a-Chip (SoC) targeting wireless and 
handheld platforms, featuring Intel® XScale® microarchitecture. To 
meet the power and performance scaling challenges, system on-chip 
solutions for handheld devices, such as PXA27X, Intel® XScale™ 
Microarchitecture based wireless application processor, deploys two key 
technologies: (1) dynamic voltage/frequency control of the core, 
interconnect, and memories, and (2) multiple power modes, covering 
Run, Idle, Deep Idle, Standby, Sleep, and Deep Sleep. 

2. PROPOSED IMPROVEMENT SCHEMES 

The behavior of an application is dynamic and based on the content 
being processed by the application, user inputs, and etc. Assuming that 
the application is slow varying compared to the sampling rate of the 
performance profiler, the paper [3] proposed to use the application’s 
resource usage in the current sampling period to be the same as that in 
the previous sampling period. We believe we can extend the prediction 
capabilities using many known statistical signal processing techniques 
such as moving average as well as auto regressive modeling. Workload 
behaviors can be usually represented by (a) core instructions 
consumption, (b) memory transactions, and (c) other resource usages. 
From an optimal operating point adjustment perspective, we need to 
consider the core and memory in greater detail as it consumes the bigger 
share of the overall power budget. The prediction and control is an 
intrusive method. In order to reduce the intrusion, we also adopted an 
adaptive sampling period selection. Based on the prediction, the 
adjustment of the frequency and voltages are performed. We believe a 
better model of performance is required to ensure that the system’s 
future operating point is appropriate for the predicted resource forecast. 
We adopted a finer modeling approach for the same. The following 
sections describe the proposed improvements in all three areas, specially 
focusing on the prediction methods. 

2.1 Prediction Algorithms 

In this paper, we elaborate two methods of dynamically predicting the 
workloads based on linear and non-linear filtering and also auto-
regressive models. Certain simplifications were made in-order to ensure 
that prediction cost is minimal and does not compromise the real-
timeliness of the control mechanism. 

2.1.1 Prediction Using Moving Average (MA) Model 

In this case, we model system usage demands being a Moving-Average 
process, where the demand for resource utilization at nth probing 
window is a weighted sum of the same over last N windows. Let us 
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define ][ˆ nWR  as the prediction of demand or usage of a resource R at 

the nth probing window, 
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prediction. At the end of each probing window, the frequency is 
adjusted based on the demand forecast of the respective resource. The 
frequency forecast is considered directly proportional to the demand 
forecast. Thus, at each probing window, the adjustment to the frequency 
is done as follows: 
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Here gba ,, are the proportional constants. For fb and fm adaptation, 

demands for the other resources are also considered and hence the 
second summation over M number of resources. In this paper, we study 
different models to determine {C}, gba ,, and different order of 

history N.

2.1.2 Prediction Using Auto-Regressive (AR) Model 

The operating frequency is a three number triplet: f = {fc, fb, fm},
representing core, bus, and memory frequencies, respectively. We 
model system usage demands being an auto-regressive process, where 
the demand for resource utilization at nth probing window is a weighted 

sum of the same over last N windows. Let us define ][ˆ nWR  as the 

prediction of demand or usage of a resource R at the nth probing 

window, 
=
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][][][ˆ ; where ][iWR is the observed 

demand and ][icR is the coefficient of prediction. At the end of each 

probing window, the frequency is adjusted based on the demand 
forecast of the respective resource. The frequency forecast is considered 
directly proportional to the demand forecast. Thus, at each probing 
window, the adjustment to the frequency is done as follows: 
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Here as stated in the previous MA model description gba ,, are the 

proportional constants. For fb and fm adaptation, demands for the other 
resources are also considered and hence the second summation over M
number of resources. In this paper, we study different models to 
determine {C}, gba ,, and different order of history N. For ARMA 

modeling the frequency adjustment is as follows:  
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The appropriate {c}, {c’}, },,{ gba and }',','{ gba are to be 

derived dynamically or through some predefined methods. 

2.1.3 Coefficient Derivation and Selection 

The accuracy and hence the effectiveness of the control relies on the 
right selection of the prediction coefficients. Determining these 
coefficients requires complex computation, which will make the 
dynamic prediction intrusive and will pose an extra overhead. So we 
simplified AR, ARMA and MA methods to have predefined 
coefficients. Also, for lower order of prediction model even certain non-
linear filtering methods are viable. 

For MA models, we adopted three variants of the prediction methods: 
(a) equal weight moving average, (b) linear prediction, and (c) median 
filtering. For two different workloads (MP3 playback and MPEG4 
decoding), Figure 2 shows improvement of accuracy based on different 
prediction methods. It covers three prediction orders, i.e., N = 1, 2, and 
3. Interestingly, moving average and median schemes perform much 
better than linear estimate scheme. Furthermore, median scheme error is 
extremely low even with the lowest prediction order, 1. If considering 
both its simplicity and effectiveness, the median scheme is excellent to 
forecast audio and video workloads. Please note that in this experiment, 
for audio workload, 128 kbps bit stream of 44.1 KHz stereo MP3 
playback is considered. For video workload, 384 kbps MPEG4 video 
with akiyo and coastguard clips are considered. 

Prediction Accuracy for Video and Audio 
Workload
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Figure 2: Prediction Error of Three Models for Audio and Video 
Playbacks 

More accurate prediction of the workload demands can easily translate 
to running the core, bus and memory sub-system at the correct 
frequencies and not burn any extra power or pay performance penalty. 
Instead of picking a single prediction model, a hybrid approach can also 
be adopted. 

For AR and ARMA models different methods can be adopted. We 
implemented 4 different configurations. The configurations are as 
follows: “Configuration a” represents equal weights for MA samples 
and median operation of the AR samples. “Configuration b” represents 
equal weights for MA samples and AR samples. “Configuration c” 
represents median filtering on both MA and AR samples. 
“Configuration d” represents reverse of configuration b. Figure 3 shows 
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how the prediction error changes between different configurations for 
an audio workload. It can be seen that for different configuration the 
prediction errors varies. 

Prediiction Error for Different AR models
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Figure 3: Prediction Error of Different AR Model Configurations 
for an Audio Workload

2.2   Adaptive Sampling Period 

Naturally, some applications change resource requirements at a fast 
pace, but others do not. Therefore, using a fixed-size probing and 
decision window cannot meet different applications’ needs. The 
framework adopts three adaptation methods for sampling periods: (1) 
linear adaptation (LILD-Linear Increase and Linear Decrease) and (2) 
linear increase-exponential decrease (LIED) of the sampling period (3) 
linear increase and direct decrease (LIDD). If the prediction error goes 
up, the sampling period is reduced (linearly or exponentially or reset 
back to the initial conservative value) and when the prediction error 
reduces or stabilizes, the sampling period is increased. This way, the 
scaling technique is more flexible and faster to detect the application’s 
dynamic needs so as to seek more chances to reduce more power 
dissipation and on the other hand avoid possible performance hazards 
happening momentarily. 

2.3   Memory/Computation Characterization 

The characterization algorithm uses the predicted resource demands by 
the application. For communication fabric demands and memory 
demands, the similar prediction would hold true. However, the demand 
forecast can be better understood by classifying if the application is 
memory bound or computation bound. In terms of deciding the 
operating point for the next time window, the current nature of the 
application (memory bound or compute bound) can be taken into 
account. If an application is identified as a compute bound, the core 
frequency change is more important and effective than the memory 
frequency change and opposite for a memory bound case. The frame 
work is adopting characterization mechanism described in [5]. Based on 
the memory operations, number of instructions retired etc. the 
characterization model decomposes the number of cycles consumed in a 
window into computation and memory cycles. The model also identifies 
if the memory cycles are throughput related or latency related. Based on 
the analysis, operation point selection can be actuated.  

Figure 4 gives an example how the memory model breaks down 
execution cycles into memory and compute components for an MPEG4 
decoding application. It also shows how the memory and computational 

composition changes with memory settings and the core frequency. 
More analysis and conclusion can be found in the paper [5]. 

Currently we are measuring the effectiveness of the model in terms of 
actuating the operating point predicted by the prediction model. 
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Figure 4: MPEG4 Simple Profile Decoder Composition with 
Various CPU Frequencies and L2 Cache On/Off 

3. RESULTS

We propose a goodness metric based on energy-delay product to 
compare different approaches. The goodness metric is defined as 
follows: 

·
WindowsAll

apap ffpenaltyePerformancffpenaltyPower 2)),(_(),(_

Here, fp = predicted frequency requirement and fa = actual frequency 
requirement at an instant. Table 1 provides the definition for 
performance penalty and power penalty. 

Table 1: Definition of Goodness Metric for Different Cases 
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3.1    Goodness Comparison for Prediction Model 

Based on the penalty computation proposed above, we measured the 
performance, power and prediction errors so that a goodness metric can 
be compared between different prediction approaches. Table 2 
compares different MA models for the audio application. It can be seen 
that the equal weight moving average prediction method performs the 
best for the Energy Delay based goodness factor as proposed earlier. 

Similarly, we compared the moving average prediction method with the 
ARMA model configurations (Config “a” to “d”, definitions of the 
configuration can be found Section 2.1.3) in Table 3. It appears that 
configuration “c” performs the best in terms of the ED goodness metric. 

The improvement of the ARMA model can be attributed to the reduced 
prediction error for the ARMA/AR models. However, we also found 
that for the audio applications, some of the AR/ARMA models perform 
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equally or worst compared to the MA model. We are currently 
investigating the non-intuitive aspects. For the chosen configurations, 
we are currently measuring the power of the system. 

Table 2: Performance and Power Penalty for Different Prediction 
Methods (Goodness Metric)  MA Adaptive Approach1

Prediction Order 
Model 

Metric 1 2 3 4 

Prediction Error 1226 718 500 570 

Power Penalty 12 8 6 9 
Moving 
Average 

Performance Penalty 855 376 142 153 
Prediction Error N/A 4060 3737 1205 
Power Penalty N/A 24 14 12 Linear Estimate 
Performance Penalty N/A 80000 617 569869 
Prediction Error N/A 722 743 752 
Power Penalty N/A 8 8 9 Median Filtering 
Performance Penalty N/A 378 426 273 

Table 3: Comparison of a MA Model with Different Configurations 
of AR Model 

Stream Metric MA Config a Config b Config c Config d 

Pred Error 123.36 189.69 162.18 237.72 178.64 
Power 1.82 2.14 2.01 2.53 2.12 

akiyo @ 
104MHz 

Performance 8.88 13.00 11.14 36.71 11.57 
Pred Error 17.11 17.96 19.90 15.72 16.59 
Power 0.95 1.25 1.41 0.26 1.29 

akiyo @ 
312MHz 

Performance 5.54 5.84 5.04 6.33 5.90 
Pred Error 74.78 103.71 95.27 146.44 92.03 
Power 0.85 1.07 1.19 0.65 1.14 

coastguard 
@ 104 
MHz Performance 0.92 1.11 1.21 0.67 1.19 

Pred Error 111.71 137.29 128.33 133.81 130.06 
Power 1.32 1.47 1.42 1.20 1.46 

coastguard 
@ 312 
MHz Performance 1.36 1.42 1.43 1.19 1.46 

Pred Error 5.72 5.71 7.31 4.65 5.57 
Power 0.58 1.01 1.29 0.12 1.20 

coastguard 
@416 
MHz Performance 0.38 0.95 1.10 0.10 1.07 

3.2    Sample Rate Adaptation 

Figure 5 shows how four different sampling window size adaptive 
schemes work for the audio workload. The “origin” scheme is to have a 
fixed-size sampling window. The “LILD” scheme is to linearly increase 
and decrease the sampling window size as needed. The “LIED” scheme 
is to linearly increase while exponentially decrease the sampling 
window size. The “LIDD” scheme is to predefine a minimal window 
size 2  and then linearly increase the window size, but shrink to the 
minimal window size once a down-side adaptation is determined. 
Clearly, “LILD”, “LIED”, and “LIDD” are detecting the same trends in 
the workload. “LIDD” does the fastest response and resets the window 
size. “LILD” is the lowest one, which might miss the opportunities to 
save more power or catch up performance degradation. To be 
conservative and keep the fast response speed, the “LIED” and “LIDD” 
schemes are recommended. 

4. CONCLUSION 

This paper is intended to enhance a software framework based on Intel® 
XScale™ Microarchitecture technology, to adapt system resources and 
frequencies on the fly to meet different applications’ dynamic 
requirements and as a result to reduce power dissipation. We propose 
three novel techniques that will help predict adapt to system behaviors 

1
Lower the number better. The numbers represent ratios and are unitless. 

2
 In this experiment, the minimal window size is set to be the window size in the 

“origin” scheme.

with high accuracy and therefore save as much as possible power 
meanwhile maintaining performance. Experiments currently show that 
higher order MA and Median prediction perform the best in terms of the 
goodness. AR and ARMA modeling show even higher improvements 
for video workloads. Memory modeling adaptive windowing shows 
promise for further optimization. Current results recommend adoption 
of LIED method of sampling window adjustment. 

Sampling Window Size Adaptation

0

1000

2000

3000

4000

5000

6000

0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 3.5E+05 4.0E+05 4.5E+05

Time (Cycles)

S
am

pl
in

g 
W

in
do

w
 S

iz
e

origin

lild

lied

lidd

Figure 5: Sampling Window Variation with the Time for Four 
Different Window Size Adaptations 
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