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ABSTRACT

We report on the development of direct digital radio frequency pre-
distortion techniques for high power ampli ers and their demonstra-
tion in a MF band FPGA-based system. The basic component of
our work is a nonlinear cubic voltage characteristic which is realized
digitally by means of a look-up table. This method is situated in the
context of existing baseband and analog predistortion techniques. In
particular, we demonstrate our results experimentally and show a re-
lationship between the bit-depth of our look-up table and the size of
intermodulation distortions in the output of a class A ampli er.

Index Terms— Communication System Nonlinearities, Field
programmable gate arrays, Microwave Power Ampli ers

1. INTRODUCTION

Modern linear modulation schemes place strict requirements on the
linearity of High Power Ampli ers (HPAs). To maintain linearity
with class A or class AB operation the input power may be backed-
off so that the operating point is not close to saturation. This solu-
tion, however, can be very inef cient [1]. Alternatively, the signals
involved (either the input or the output) may be altered in some way
to compensate for the distortions introduced by the HPA and any
other component in the forward link. We explore predistortion [2],
which is a procedure for applying corrective distortions to the input
signal.

Typical digital predistorters employ a bandpass [3] [4] represen-
tation of the transmitted signal and ampli er nonlinearity. In such
systems, it is assumed that, before up-conversion (I/Q modulation)
the input signal is stored as a series of complex numbers to which
suitable nonlinear amplitude and phase characteristics are applied
[5]. These correct for the two canonical nonlinear functions of a
bandpass nonlinearity, respectively the AM/AM and AM/PM char-
acteristics. Further research [6] has augmented this basic bandpass
or baseband approach to include cases where frequency dependence
and memory effects [7] are observed. The memory polynomial [8]
is one example, noteworthy for the fact that it models the predis-
torter in a way that is linear in the parameters, which allows for the
application of adaptive ltering techniques [9].

Often, wideband signals are the reason cited for the presence
of memory effects. However, even in these cases, the quoted sig-
nal bandwidth is always still much smaller than the RF operating
frequency. For instance, in [8] the signals are shown as having a
bandwidth of 15 MHz compared with an RF carrier frequency of ≈
2 GHz. It is unclear how these baseband, or baseband with memory
approaches could be feasibly employed when dealing with a very
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wideband signal, for instance one that stretches across multiple oc-
taves. Of course, we can always write down a complex envelope
representation of an arbitrary RF signal (that is, express it as an
amplitude and phase modulated sinusoid) but it is unclear exactly
what interpretation to attach to this complex envelope except in the
narrowband cases. Another way of considering the problem is that
baseband predistortion is primarily concerned with in-band distor-
tion products that affect such distortion metrics as adjacent channel
power ration (ACPR) [7]. In a standard two-tone test the lowest or-
der in-band intermodulation products are 2f2 − f1 and −f2 + 2f1.
The distortion products at the third and higher harmonics are natu-
rally ignored in baseband approaches or assumed to be attenuated by
bandpass channel lters.

The design of certain analog predistorters does not presuppose
any assumptions on the bandwidth of the input signal. The ana-
log predistorter described in Roselli [10], for example, is a cubic
nonlinearity meant to act instantaneously and directly upon the RF
voltage. An analog cubic nonlinearity can be achieved by a diode
network [11] or by an active circuit as in [10]. To be at all practical,
the memoryless nonlinearity must be followed by a tunable lter that
adjusts the phase and amplitude of any generated nonlinear compo-
nents. Perfect antiphase between the nonlinear components of the
predistorter and the ampli er attains the maximum suppression. Be-
low, we give experimental results for exactly this type of test.

The system we present can be viewed as a combination of the
two predistortion schemes mentioned above. On the one hand it is
digital, consisting, at its core, of a look-up table routine and thus
not dissimilar algorithmically from the baseband LUTs [12]. On
the other hand, all of the signals involved and all operations are at
RF frequencies. The predistorter and HPA are implicitly modeled
by nonlinear block models such as the Wiener, Hammerstein, and
Wiener-Hammerstein systems where all signals and coef cients are
real-valued.

2. TEST PLATFORM

Our platform for implementing predistortion is an FPGA based DSP
kit distributed jointly by Xilinx and Nallatech. The user FPGA on
this kit is a Xilinx Virtex2-Pro30. The kit contains two independent
on-board ADCs/DACs interfaced to the FPGA. The DACs operate at
a sampling frequency of 105 msps with 14 bit resolution. Both the
DACs and the ADCs have a voltage range of -1 to +1 volts with 50Ω
output/input impedance. The kit provides a header which connects to
free pins on the FPGA. This header allows us to send digital control
signals (from the parallel port of a PC with Matlab) to the FPGA
while it is running. All designs were written in VHDL and will be
made available as a VHDL package.

Figure 1 shows the structure of our predistortion program. We
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Fig. 1. Block diagram of the predistortion program for the DSP kit.

split the input signal into two branches which are later summed to
create the predistorted output signal for the ampli er. In one branch,
the input signal passes through unchanged. In the other branch, we
use the 14 bit signal as an index into a look up table containing a
cubic nonlinearity. In general, the LUT only uses N < 14 MSBs
of the 14 bit input signal. That is, the signals are rounded. We later
present experimental results showing how the size of the LUT (2N )
affects performance.

The output of LUT is then attenuated and time delayed by amounts
set by the external control (PC). This allows us to tune the predis-
torter for the maximum reduction in distortion. The extra DAC/ADC
channel gives a reference signal for the case with no predistortion.

3. NONLINEAR BLOCKMODELS

Here, we attempt to provide some theoretical background for our ex-
periments. By substituting a series of three block models of increas-
ing complexity for the HPA we hope to motivate the given form of
our predistortion algorithm. We understand a block model as simply
a system consisting of discrete combinations of memoryless nonlin-
earities and LTI systems. Throughout, f = x + γx3 is the predis-
torter nonlinearity and g = x + βx3 is the nonlinearity occurring
in the PA model. We examine a series of three PA models in order
of increasing complexity, a memoryless nonlinearity, a Hammerstein
System, and a Wiener-Hammerstein System.

The coef cients γ and β and all signals are assumed to be purely
real. That is, the AM/PM distortions are considered negligible. We
believe that phase distortions could be incorporated in the follow-
ing discussions by generalizing to complex coef cients and making
available the hilbert transform of the input signal. Furthermore, as
alluded to above, examples of predistorters which do not account for
amplitude-to-phase conversion–and which are, in fact, cuber circuits–
have been reported in the literature [10].

3.1. Memoryless Nonlinearity

The rst case is that of a memoryless nonlinearity, possibly followed
by a gain term K. We include K because we assume that the linear
gain of the device has been factored from g. The PA model has the
following input/output relationship.

y(t) = K(g(x(t))) (1)

Assuming a weak nonlinearity the linearization solution is im-
mediate and well known. We are seeking to eliminate all nonlinear
terms in the composite function g ◦ f = g(f(x(t))). Keeping terms
of up to rst order in γ or β this gives.

γ = −β (2)

From this can be found a relationship between γ and the 1 dB
gain compression point for γ ∈ [0,−β]. The relationship can be
derived, for instance, from the results in [13].
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3.2. Hammerstein System

The Hammerstein system is a memoryless nonlinearity followed by
a linear lter. An extra gain term is not necessary here because the
linear gain of the device can be captured by H . The cascade of
linearizer and PA model can be written as follows.

y(t) = H · g(f(x(t))) (4)

Since the nonlinearity g occurs at the input of the model, the
linearization problem is essentially the same as in the previous case.
The composite function g(f(x(t))) should be linear or close to lin-
ear over the range of the input. We suggest the Hammerstein model
in cases where only a memoryless predistorter is available but the
data—in the form of measured input and output waveforms—is sug-
gestive of frequency dependence or memory.

Hammerstein system identi cation is well studied and can be
performed by driving the DUTwith either noise or a broadband com-
munications signal and applying the Narendra-Gallman algorithm
[14]. The kernel regression estimate [15] also provides a computa-
tionally ef cient method to estimate the parameters of a Hammer-
stein system.

3.3. Wiener-Hammerstein System

The Wiener-Hammerstein system is a three block model consist-
ing of a memoryless nonlinearity between two linear systems, also
sometimes called a sandwich system. Again, we give the relation-
ship for the cascade of predistorter and PA model.

z(t) = H2 · g(H1 · f(x(t))) (5)

In this case, there is an extra operator H1 interposed between f
and g. A natural way to approach the problem of linearization might
be to attempt to nd a class of linear systems which commute with
nonlinear functions.

[f, H ] ≡ fH −Hf = 0 (6)

Clearly, if the above relationship holds forH1 then results from
the previous two cases would carry over. However, the only linear
systems which, in general, satisfy the condition for commutativity
seem to be unity gain time delays.

If, instead of commutativity,H1 has a linear phase response over
some operating bandwidthΩ then we observe that the relative phases
of all harmonics generated by f are maintained through H1. Thus,
the antiphase condition (2) can still be met. That is to say, after
H1 we can always perform a time shift so that all components are,
for instance, cosines. To be more precise, let Ωk be the set of all
ω for which the phase response of the system H1 is ejωk. Then,
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for some k, Ω is a subset of Ωk such that if ω ∈ Ω then 3ω ∈
Ωk. The only dif culty is that the potentially nonconstant magnitude
response may result in the nonlinearity being undercompensated or
overcompensated.

Consider the intermediate signal at the output of W-H nonlinear-
ity,

y(t) = g(H1 · f(x(t))) (7)

When x(t) = A cos(ωt), y has the following form up to a shift-
ing of the time coordinate,

y(t) = ξ0 cos(ωt)+(γξ1+βξ2) cos(ωt)+(γξ3+βγξ4) cos(3ωt)
(8)

ξ0 = A|H(ω)|

ξ1 = A
3 3

4
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In the absence of the nonlinearities f and g the only component
of y(t) would be ξ0 cos(ωt) = A|H(ω)| cos(ωt). Therefore, for
linearization, we attempt to retain this term while minimizing the
remaining terms. We construct a functional which measures devia-
tion from linear behavior for sine wave excitations. This is just the
magnitude of the strictly nonlinear components averaged over Ω.

L(γ) = �
Ω

dω|γξ1 + βξ2|+ |γξ3 + βξ4| (9)

To develop an analytic solution we exchange the magnitude op-
eration with squaring.

L(γ) = �
Ω

dω(γξ1 + βξ2)
2 + (γξ3 + βξ4)

2 (10)

The minimum can be found by Leibniz differentiation.
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The solution is,
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If |H(ω)| is a constant then we observe the following three

cases. When |H(ω)| = 1 then the system is just a time delay, be-
cause we have assumed linear phase. When |H(ω)| > 1 then, in 12,
γ > (−β). When |H(ω)| < 1 then, in 12, γ < (−β). A similar
result is obtained in [11].

Fig. 2. A representative set of data from our experimental proce-
dure. The plot shows overlapping plots of the power spectrum of the
ZHL-32a output for the cases with (black) and without (light gray)
predistortion. The two large spikes in the center are the input signal
while all other components are noise or nonlinear distortion compo-
nents. We note the existence of spurious signals in the output of the
FPGA.

4. EXPERIMENT

The experimental procedure was to drive the ampli er with a two-
tone input (frequencies f1 and f2) and vary the phase and amplitude
of the cubic correction term by input from a PC. We were also able
to perform tests at multiple center frequencies and frequency differ-
ences (f2 − f1). The magnitudes of the IMD were rst measured
and gave a reference for each individual test. In all cases the fre-
quency difference between the two input components was from 0.1
to 0.3 MHz and the input frequency was varied from 1.1 MHz to
1.7 MHz. The measurements were taken with a LeCroy Waverunner
oscilloscope with fast Fourier transform capability. We present data
for a frequency difference of 0.3 MHz.

The ampli er we tested was a Mini-Circuits ZHL-32A class-A
ampli er terminated with a matched attenuator.

A sample output of an experimental run is shown in Figure 2.
A summary of our data for multiple frequencies is shown in Figure
4. And nally, our data showing IMD power versus the number of
bits in the LUT is shown in Figure 3. We also have similar data
pertaining to the correction of the third harmonic in a single tone
test.

5. CONCLUSIONS

As noted above, our FPGA implements a time delay by an integer
number of samples in the cubed signal relative to the input signal be-
fore the two are added together to create the predistorted signal. At
low frequencies or small bandwidths this time delay provides enough
control over the phase of the cubic term to obtain adequate predis-
tortion. However, in the general case, (especially when we want
to predistort in the vicinity of the fundamental and in the vicinity
of the third harmonic simultaneously) we need a ner control over
the phase response in the cubic branch of our predistorter. The im-
plementation of such a tunable phase shifting program is our next
immediate area of research. Another avenue for research would be
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Fig. 3. We show the size of the IM3 intermodulation products ob-
tained for the optimal predistorter amplitude and phase settings as a
function of the number of bits of resolution in the LUT. As before the
2f2 − f1 components are represented by circles and the 2f1 − f2
components are represented by triangles. Predistortion (black) No
Predistortion (light gray).

to implement quintic and higher nonlinear LUTs in addition to the
cubic nonlinearity.

A large part of our motivation for this work has been the pos-
sibility of realizing this type of predistortion in high speed super-
conducting electronics. While it may seem impractical to duplicate
our results at 1 GHz, such speeds are not outside the projected range
of superconductor based electronics [16]. However, it was only our
goal to demonstrate the predistorter operating in principle.
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