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ABSTRACT

The unsupervised training we carried out on the 1,858-hour un-

transcribed Arabic Broadcast News (BN) data yields a sizable 

gain. However, this gain is only about half of that achieved on the

1,900-hour English BN data. This paper presents our efforts that 

aim at enlarging the gain on the Arabic data. These efforts include 

a design of an explicit hypothesis-confidence-estimating method 

for the data selection, use of new features and neural networks

(NN) to improve hypothesis-confidence estimation, and alleviation 

of the over-fitting problem existing in the estimation. Our 

experiments show that both the explicit hypothesis-confidence-

estimating method and the use of new features improve the

estimation and render the unsupervised training extra gains; the

use of neural networks doesn’t significantly improve the 

confidence estimation; the alleviation of the over-fitting problem is 

not significant enough to decrease the word error rate (WER). This 

paper also presents improvements of unsupervised training we 

conducted on a morpheme-based Arabic system and on models 

trained with maximum mutual information (MMI) criterion.

Index Terms—speech recognition, unsupervised training, 

confidence estimation, Arabic broadcast news

1. INTRODUCTION 

In paper [1], we reported the results of the unsupervised training 

we carried out on both the 1,900-hour English BN data and the

1,858-hour Arabic BN data. Although the gain produced by the

unsupervised training on the Arabic data is substantial, it is much

smaller than the gain observed on the English data. As part of our

efforts to find out the reason, we manually inspected 6 episodes 

randomly selected from the Arabic data, and the inspection 

revealed that only less than half (48%) of the 6-episode data is

pure news speech, and the remaining is either pure music or speech 

with music background or drama dialogues. The high percentage

of non-news and noisy news data was out of our expectation, and 

we thought that it is the major factor resulting in the relatively

poor performance on the Arabic data. We then started to focus on 

improving the data-selecting algorithm, hoping to exclude as much 

noisy data as possible from the training. As our initial efforts in

this direction, in paper [1] we implemented the incremental

training method and the language model perplexity-based episode-

removing method. Both methods helped the unsupervised training 

to yield extra gains, but the total gain on the Arabic data was still 

only about half of that observed on the English data. Since then,

we have worked more in this direction. We also ran the MMI

training on the unsupervised data to see the effect of unsupervised

training on MMI models.

We organize this paper as follows: Section 2 presents an 

explicit hypothesis-confidence-estimating method we designed to

improve the data selection; Section 3 addresses the other efforts we 

took to improve the confidence estimation, including use of new

features, use of NNs, and alleviation of the over-fitting problem;

Section 4 reports MMI training experiments we carried out on the 

unsupervised data; Section 5 concludes this paper.

2. AN EXPLICIT ESTIMATION METHOD FOR 

HYPOTHESIS CONFIDENCE

In our previous work [1], we showed the benefit of the use of

confidence scores in the data selection. Therein, the confidence 

score of a hypothesis was estimated implicitly as a weighted sum

of its word confidence scores,
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where N is the number of words in hypothesis h, and 

and  are the confidence and duration

(length) of word , respectively.  The score computed in Eqn.1 

is an approximation to the correctness of a hypothesis. The higher

the average word confidence score, the more likely the hypothesis

is correct.  However, it is possible that two hypotheses have the

same average word confidence scores but differ significantly in

terms of accuracies.
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      It would be preferable to explicitly estimate confidence scores 

for hypotheses. We have been using the generalized linear model 

(GLM) [3] to estimate confidence in various applications [4]. To 

train the GLM for the explicit estimation of hypothesis confidence,

the correctness of each hypothesis must be defined, and it is

usually defined as a binary value – either 1 if correct or 0 if wrong. 

Normally, we would consider one hypothesis as correct if its

accuracy is 100% (or 1). If we define the hypothesis correctness in

this way, few hypotheses, however, in the whole test set will be 

correct, because the sentence accuracies are significantly low even

for recognition systems that have WERs below 10%. The GLM, 

hence, will be trained to select little data, and the unsupervised 

training won’t work properly. In fact, for the unsupervised training

it is not crucial that the automatically transcribed data that is 

selected for the acoustic training must have no errors. Our previous

experiments on the English BN data show that the unsupervised 

training without data filtering (blindly selects all data) performs

only slightly worse than the lightly supervised training [1].

Therefore, we choose an accuracy threshold, x, and consider one 

hypothesis safe to add into the training if its accuracy is above the 

threshold x (0.5<x<1). Then, we define one hypothesis as correct 

if its accuracy is above the threshold and as wrong if not. In this 

way, there will be more correct samples in the GLM model
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training if x < 1, and the estimated scores reflect the confidence 

that the accuracies of hypotheses are in the region of [x, 1]. 

Similarly to the implicit method (Eqn.1), we use a confidence

threshold to select data. One hypothesis is selected if its 

confidence estimated in the new explicit way is higher than the 

confidence threshold. So, there are two thresholds used in the 

explicit method, the accuracy threshold for the model training and 

the confidence threshold for the data selection. The best setting of 

the two thresholds needs to be tuned. 

      Besides defining the correctness, we also need to generate 

hypothesis-related features for the GLM training. We generated 21 

hypothesis-related features for each hypothesis, such as posterior 

probability, normalized acoustic and language model (LM) scores, 

and number of words. The GLM training is then to learn the 

mapping between the hypotheses’ features and their correctness 

values (1 or 0). 

      Following the work done in [1], we carried out all 

unsupervised training experiments on the 1,858-hour Arabic data, 

out of which 1,570 hours remain after the automatic audio 

segmentation. The baseline model was trained on the 150-hour 

seed data. Results reported in all the following experiments were 

obtained using ML speaker-independent models (MI-SI), unless 

otherwise specified. The test set “h4ad04” used in some 

experiments denotes the Arabic development set released by LDC 

for the EARS RT04 evaluation.

      Table 1 lists the comparison between the explicit and the 

implicit methods. The column “Train data” indicates the seed data 

plus the data selected by the methods. For the implicit method, the 

confidence threshold of 0.85 was found in [1] to produce the best 

WER reduction. For the explicit method, we set the accuracy 

threshold to 0.7 and the confidence threshold to 0.5. In this 

comparison, we didn’t carefully tune the two thresholds for the 

explicit method.

Estimatio

n method 

Conf.

thres.

Train data 

(#hours)

Mode size 

(#Gauss)

Un-adapted

WER (%) 

Implicit 0.85 150+488 388K 16.3

Explicit 0.5 150+817 551K 16.0

Table 1.  Comparison of the explicit and implicit estimation of 

hypothesis confidence used in the unsupervised training (WERs 

measured on h4ad04 test set). 

     Compared to the best result we obtained by using the implicit 

method, the explicit method produces 0.3% absolute gain. So, the 

explicit method outperforms the implicit method. A more thorough 

comparison of the two methods will be given in the next section.

3. IMPROVING THE CONFIDENCE ESTIMATION 

Since the new explicit estimation method outperforms the old 

implicit method, we next tried to further improve the confidence 

estimation for the explicit method. 

3.1. Use of new features 

We noticed that some features, which should be beneficial to the 

confidence estimation, had not been used in our current confidence 

estimation.  Historically, we had been using features derived from 

n-best lists for the GLM training. No features derived from lattices, 

which accommodate more information than n-best lists, had been 

used, though our modern decoding sequences output lattices. The 

size of a lattice is a good indication of the decoding uncertainty, 

which has a strong correlation with any kind of confidences. So, 

we added two simple and straight-forward lattice features to the 

GLM training, number of nodes per word and number of arcs per 

word. To get the two features for one lattice, we divided the 

number of nodes and the number of arcs in the lattice by the 

number of words in the corresponding top-1 hypothesis. Moreover, 

our earlier experiments using the LM perplexities (PPL) of 

episodes to exclude data show positive results [1], so we also 

added the episode LM perplexity as another feature to the GLM 

training. We trained the GLMs on the “h4ad05” data set, which 

includes 6 hours of Arabic BN data put together by BBN. 

      The normalized cross entropy (NCE) is a commonly used 

metric to measure confidence estimation quality [5]. Table 2 shows 

effect of these new features on the NCE metric. The first half of 

the table (2nd-4th rows) shows the effect on the explicit hypothesis-

confidence estimation, and the second half (5th-7th rows) shows the 

effect on the word confidence estimation, which is used in the 

implicit hypothesis-confidence estimation. The accuracy threshold 

in the explicit estimation was set to 0.7. The results show that the 

new features increase the NCE significantly for the hypothesis 

confidence estimation and slightly for the word confidence 

estimation. This is reasonable since the new features are more 

closely correlated with hypotheses than with words. The results 

also show that the lattice features is more beneficial to the 

estimation than the PPL feature does. 

Confidence

type

Use Latt. 

Feat.

Use PPL 

feat.

NCE score 

Hypothesis no no 0.394

Hypothesis yes no 0.444

Hypothesis yes yes 0.457

Word no no 0.326

Word yes yes 0.332

Word yes yes 0.333

Table 2.  Effect of adding the lattice and perplexity features   to the 

GLM training for the confidence measures (the NCE scores 

measured on the h4ad05 test set) 

      Since the new features improved the performance of the 

GLMs, we then re-ran the unsupervised training experiment using 

the explicit hypothesis-confidence-estimating method as well as 

the one using the implicit method, but we replaced the GLMs used 

in the data selection with their corresponding new ones trained 

with the new features. These new experiments are shown in Table 

3.

Method Accu.

thres.

Conf.

thres.

Lat. & 

PPL 

Train data 

(#hours)

Un-adaptd

WER 

- - - - 150 18.1

Explici 0.7 0.5 no 150+817 16.0

Explici 0.65 0.5 yes 150+770 15.7

Implici - 0.85 no 150+488 16.3

Implici - 0.85 yes 150+496 16.1

Table 3. Effect of the new lattice and perplexity features on the 

performance of the unsupervised training (WER on h4ad04) 

      To have fair comparisons, we tuned the thresholds for all the 

cases given in Table 3. For clarity, only the best setting for each 
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case is listed in the table. The results show that the new features 

reduce the WER by 0.3% absolute (the 3rd vs. the 4th row) the 

training that uses the explicit method and by 0.2% absolute (the 5th

vs. the 6th row) for the training that uses the implicit method. With 

the new features in both methods, the explicit method outperforms 

the implicit method by 0.4% absolute WER reduction (the 4th vs. 

the 6th row). Compared to our previous work (the 5th row), the 

development of the explicit estimation method and the use of new 

features renders the unsupervised training 0.6% extra gain (the 4th

row). Compared with the baseline given in the 2nd row, the 

unsupervised training with the improved data selection (the 4th

row) achieves a 2.4% absolute (13% relative) WER reduction. 

3.2. Investigation on using neural networks 

In Section 3.1, we generated 24 features for each hypothesis. The 

GLM was trained to learn the mapping between the features and 

the hypotheses’ correctness values. However, we believe that the 

mapping is highly nonlinear, so we tried NNs to learn the 

mapping, hoping improving the modeling accuracy. 

      We trained NNs on the same data – the “h4ad05” data set – as 

used to train the GLM in the explicit method. This data set has 

2059 segments after the automatic audio segmentation. We used 

the top-1 decoding hypothesis of each segment to train the GLM 

models in the explicit method, so there were 2059 training 

samples. We noticed that the trained GLM has a greatly higher 

NCE score on the development set (or Dev set) than on a 

validation set (or Val set), so these samples are not enough and 

cause the trained model to over-fit the training data.  We will 

address this over-fitting issue later. The Val set that we used is 

called “h4av05” – a 3-hour test set that was set up by BBN as well. 

We used the Neural Network Toolbox in Matlab to carry out this 

investigation. We found that among many NN training algorithms 

available in the Toolbox, the resilient back-propagation (RBP) 

algorithm and the Bayesian regularization (BR) algorithm perform 

the best for our case. The BR algorithm, though assumed to be able 

to generalize well, performed similarly to the RBP, so we list only 

the performance of the RBP algorithms in Table 4. The pattern, 

“m-n-l”, in the “Structure” column of the table indicates that the 

NN has m, n and l nodes in its input, hidden and output layers, 

respectively. The NN has no hidden layer if n=0, and it becomes 

similar to the GLM. 

NCEmodel structure Training

Iterations H4ad05 H4av05

GLM 22-0-1 80 0.475 0.318

22-0-1 100 0.469 0.313

22-2-1 100 0.491 0.314

22-3-1 100 0.498 0.300

22-3-1 50 0.487 0.322

NN

22-4-1 50 0.500 0.296

Table 4. Comparison of the GLM and the NNs trained with the 

resilient back-propagation algorithm 

      From the results shown in Table 4, we first see that the NN 

performs similarly to the GLM model when it lacks hidden layers.  

Second, we observe that the NCE score on the dev set – 

“h4ad05”— can be easily improved by increasing the NN model 

size, but the NCE score quickly degrades on the Val set – 

“h4av05”. So, the NN training is fragile to the over-fitting 

problem. With careful tuning, such as the one with the structure 

“22-3-1” and with 50 iterations, the NN is able to outperform the 

GLM.  But the gain on the NCE metric is minor.  So we didn’t 

pursue further in this direction. 

3.3. Alleviation of the over-fitting problem 

We had realized that the GLM training in the explicit hypothesis-

confidence estimation suffers from over-fitting due to lack of 

training data. We then tried two things to alleviate this problem.  

     We had been using only the top-1 hypothesis of each segment 

in the GLM training. To having more training samples, our first 

effort is to include top-n (n>1) hypotheses in the GLM training.  

      At this time, BBN had set up a new 6-hour development set – 

“bnat05” – for the DARPA GALE project. For the purpose of 

using this unsupervised training in the coming GALE evaluation, 

we switched to this new dev set in all later experiments.  We also 

switched to a morpheme-based Arabic system [3], which reduces 

the out-of-vocabulary (OOV) rate substantially. We conjectured 

the high OOV rate in the word-based Arabic systems might be one 

factor that deteriorates the unsupervised training. Later, we found 

that unsupervised training on the morpheme-based produces the 

similar relative gains on the “h4ad04” test set as the word-based 

system does, so the high OOV rate doesn’t affect the unsupervised 

training performance. The validation set is still the “h4av05” set.

NCE scores Top-n

bnat05 h4av05 

Train data 

(#hours)

Un-adapted

WER 

1 0.434 0.384 150+800 19.5

2 0.431 0.397 150+771 19.5

5 0.423 0.400 150+782 -

Table 5. Effect of using top-n hypotheses in the GLM training 

(The WER measured on the bnat05 data set) 

      Table 5 lists the experiments using top-n hypotheses. In these 

experiments the accuracy and confidence thresholds were set to 0.8 

and 0.5, respectively. With top-n (2 and 5) hypotheses included in 

the training, the gap on the NCE between the Dev and the Val sets 

is reduced, and the NCE score on the Val set is also improved.  So, 

the over-fitting problem is alleviated.  However, the unsupervised 

training using the top-2 hypotheses in the GLM training produces 

the same WER as the baseline, which uses the top-1 hypothesis. 

Since the NCE improvement from the top-2 to the top-5 is 

insignificant, we didn’t run unsupervised training for the top-5 

case. We also tried to include more than 5 hypotheses, but we 

didn’t see further improvements on the NCE score. This is 

reasonable, because the similarity among n-best hypotheses for 

each segment is normally high, and the addition of more such 

hypotheses doesn’t reduce the data sparseness much. This is the 

reason that we used only the top-1 hypothesis in the first place. 

     Our second effort was to train the GLM on a larger Dev set.  

BBN had also set up a larger development set – “bncad05” – by 

adding two hours of broadcast conversational data to the “bnat05” 

set. Table 6  shows the effect of using this larger data set. In these 

experiments, the settings for the accuracy and confidence 

thresholds are 0.65 and 0.7, respectively. We found that these 

settings are slightly better than those used in the experiments listed 

in Table 5. Also, since the use of top-n (n>1) hypotheses doesn’t 

affect the WER performance, we still used only top-1 hypothesis 

in these experiments. As expected, the larger data set reduces the 
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gap of the NCE score between the Dev and the Val sets and   

improves the NCE score on the Val set. So the over-fitting 

problem is alleviated.  But, again, the WER of the unsupervised 

training is not improved. 

NCE scores Dev set 

Dev set h4av05

Train data 

(#hours)

Un-adapted

WER 

bnat05 0.510 0.395 150+880 19.4

bncad05 0.486 0.408 150+859 19.4

Table 6.  Effect of training the GLM on a larger data set (The 

WER measured on the bnat05 set) 

     Both of the two efforts alleviate the over-fitting problem. 

However, the NCE improvements on the Val set are of 

insignificance (3~5%). It might be the reason that no improvement 

has been achieved on the WER performance. 

      The baseline model trained on the 150-hour data produces a 

21.7% WER on the “bnat05” test set at the un-adapted decoding 

pass. So the relative gain on the “bnat05” test set from the 

unsupervised training listed in Table 6 is 10.6%. It is smaller than 

that the 13% gain observed on the “h4ad04” test set at the same 

decoding pass. We have investigated it. As described in [1], the 

1,858-hour un-transcribed Arabic audio data was collected from 6 

different sources. All the episodes in the “h4ad04” set are from the 

6 sources, but only 8 out of the 12 half-hour episodes in the 

“bnat05” test set are from the 6 sources. The decomposition of the 

WER according to episodes reveals that the unsupervised training 

doesn’t decrease the WER at all for the 4 episodes in the “bnat05” 

that are not from the 6 sources. That is the reason that the 

unsupervised training produces a smaller gain on the “bnat05” set. 

In general, it is true that a speech recognition model trained on 

data from one source performs poorly on data from another source. 

However, after a similar decomposition of the WER produced by 

the unsupervised training we carried on the English data, we saw 

that the dissimilarity among Arabic data sources is larger. It could 

be another factor that the unsupervised training produces a smaller 

gain on the Arabic data than on the English data.

4. MMI TRAINING 

Recall that the incremental training method in [1] yields a 0.3% 

extra gain. It could also yield a similar gain if combined with the 

new explicit confidence-estimating method. We have not done it. 

Instead, to see how much of the gain remains after the MMI 

training, we picked the best unsupervised training experiment – the 

last row of Table 6 – and proceeded to train the “MMI-SI” and 

“MMI-SAT” models. The “MMI-SI” denotes the speaker-

independent (SI) model trained under the MMI criterion, and the 

“MMI-SAT” denotes the model trained by the speaker-adaptive 

training (SAT) method under the MMI criterion.

     The performance of the different types of models is listed in 

Table 7. The 2nd and 3rd rows list the performance of the baseline, 

which was trained on the 150-hour seed data, and the 4th and 5th

rows list the performance of the unsupervised training that added 

859 hours of unsupervised data to the seed data.  First, Comparing 

the 2nd and 4th rows, one can see that the relative gain (or WER 

reduction) from the unsupervised training is 10.6% (21.7 19.4)

at the un-adapted decoding pass and shrinks to 8.0% (17.6  16.2) 

after the adaptation. Second, comparing the 3rd and 5th rows, one 

can see that after the MMI training the relative gain from the 

unsupervised training is 7.2% (16.7  15.5) after the adaptation. 

This gain is only slightly smaller than the gain (8.0%) observed on 

the ML models at the same stage.  So, the errors existing in the 

selected data don’t hurt the MMI training significantly.   

WER on bnat05 Train data 

(#hours) Unadapted (model type) Adapted (model type) 

150   21.7  (ML-SI)   17.6  (ML-SAT) 

150   20.4  (MML-SI)   16.7  (MMI-SAT) 

150+859   19.4  (ML-SI)   16.2  (ML-SAT) 

150+859   18.6  (MMI-SI)   15.5  (MMI-SAT) 

Table 7.  Improvements from the unsupervised training after the 

MMI training and the adapted decoding 

5. CONCLUSIONS 

We have presented our efforts aiming at enlarging the gain from 

unsupervised training on the 1,858-hour Arabic BN data. Due to 

the high percentage of non-news and noisy news data, we focused 

mainly on improving the data selection. The explicit method we 

developed for hypothesis confidence estimation outperforms the 

old implicit method and renders the unsupervised training 0.4% 

extra WER reduction. The use of the lattice and perplexity features 

improves the confidence estimation and produces 0.2-0.3% WER 

reduction. Our investigation shows that there is no significant 

benefit from the use of neural networks in the confidence 

estimation because of the over-fitting problem caused by the lack 

of training data. To alleviate the over-fitting problem in the 

confidence estimation, both the use of top-n (n>1) hypotheses and 

the training on a larger Dev set  achieve limited successes (3-5% 

improvements on the NCE metric) but have not contributed any 

WER reduction. 

      After these efforts, the unsupervised training on the 1,858-hour 

Arabic data corpus yields a 13% relative gain on the h4ad04 test 

set. This gain is still smaller than the 21.6% gain achieved on the 

1,900-hour English data. We believe the major reason is the high 

percentage of non-news and noisy news data existing in the Arabic 

corpus. Other reasons could be the larger dissimilarity among 

Arabic sources, relatively poorer performance of the baseline 

model used to decode the data, etc.   
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