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ABSTRACT 

In this paper, a novel technique is proposed to estimate the average 

signal-to-noise ratio (SNR) for Nakagami-m fading channels with an 

arbitrary signal constellation. The Nakagami-m distribution is a 

good fit to empirical fading data obtained from radio 

communication channels. The proposed algorithm uses absolute 

second and fourth moments of the envelope of the received signal 

over a block of data as the sufficient statistics.  The estimator is 

blind and no training sequence is used.  It is also independent of 

signal constellation. 

Index Terms — Nakagami-m, fading, signal-to-noise, estimation 

I. INTRODUCTION 

The fading phenomenon in communication channels is due to the 

presence of time varying multipaths. The Nakagami-m distribution 

has application in the modeling of the path gain of fading channels. 

The parameter m can be varied to model channel fading conditions 

from no fading (nonrandom gain) to extremely severe fading [1]. An 

important metric of fading channels is the average SNR of the 

channel. The average SNR is used in applications such as Turbo 

decoding algorithm [2] and in maximum and optimum diversity 

combining algorithms that are used in multiple-input-multiple-

output (MIMO) channels.  In [3], an SNR estimation technique for 

Nakagami-m fading channels with BPSK modulation has been 

presented. In this paper, an SNR estimator for Nakagami-m fading 

channels with arbitrary constellation is proposed.  The Rayleigh 

fading and AWGN channels are special cases corresponding 

to  and , and will be discussed as special cases of the 

proposed algorithm.  

1m m

2. CHANNEL MODEL  

Consider a digital data communication system over a fading channel 

given by 

                                            (1) nnnn wsgr

where  is the received signal at the output of the matched filter 

detector,  is the transmitted symbol of an arbitrary 

constellation,  is the channel fading gain, which is assumed to be 

a zero mean complex-valued process ,where
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independent of 

|| ng

with Nakagami distribution with parameter m

The Nakagami-m distribution is given by [1] 
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where ,)|(| 22
ng gE )(m is the Gamma function and 

is the Nakagami fading parameter. The process  is 

additive white zero mean complex Gaussian noise independent of 

with real and imaginary parts having equal variance . It is 

assumed that the arbitrary constellation has symbols with Q

different amplitudes  and probabilities 
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exclude the M-ary PSK constellation for which
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Nakagami-m distribution covers a variety of distributions via 

parameter . For example,  corresponds to Rayleigh 

distribution, 
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5.0m  indicates one sided Gaussian and as m ,

the Nakagami-m fading channel approaches a static channel and the 

PDF of g  becomes )()(|| gg xxf
n

.The average signal to 

noise ratio (SNR) corresponding to the received signal is defined 

as  
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The goal of this paper is to estimate the average SNR from a block 

of the received signal. 

3. SNR ESTIMATOR 

In this section, a blind SNR estimator based on absolute moments of 

the received signal is presented. First, we derive an expression for 

the absolute moment of the received signal 
thk nr  and use second 

and forth moments to form the necessary statistics to estimate the 

average SNR. The probability density function (PDF) of the 

envelope of  conditioned on  and is given by [4] nr ng ns
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where  is the modified Bessel function of the first kind and 

zero order. The PDF of  conditioned on  is obtained by 

averaging (4) over all possible values of .
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The  moment of  conditioned on  is given by 
thk || nr ng
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This can be reduced to [2] 
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);;(11 zbaF  is the confluent hypergeometric function given  by 
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Therefore the unconditional  moment of  is found by 

averaging (7) over the PDF of .
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Substituting equation (8) into (9) results in 
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Substituting equation (2) into equation (10) results in 
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Which is further reduced to  
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The above integral can be written in terms of the Appell function 

given by   
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Thus, equation (14) is reduced to 
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Note that       (17)               );,,(),0:,,:( 212211 xcbaFxcbbaF

where is the confluent hypergeometric function. 

Using (17), equation (16) is transformed into 
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The two moments corresponding to and  are 2k 4
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This results in the following 
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interpolation and an inverse look-up table (LUT). 
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 Plots of   for different values of m  are shown in Figure 1. In 

practice the second and fourth order moments are not available and 

must be  estimated using samples of the received data. That is, 
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where  is the data block size. We know consider two special 

cases: Rayleigh and AWGN channel. 

N

1) Rayleigh Channel: In this case and the k1m th absolute 

moment of   is given by nr
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Since , the above equation simplifies to 
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Again, if we consider the second and fourth moments of , we 

will have 
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Equation (29) can be further simplified to 
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Now we will use equations 28 and 30 and solve for , and  . 

The solutions are: 
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is valid for any arbitrary constellation except M-ary PSK. The 

estimated SNR is then given by 
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2) AWGN Channel: In this case, and the km th absolute 

moment of   is given by  nr
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The second absolute moment of isnr

      )
2

||
:1:2( )

2

||
exp(2

2

22

112

22
2

1
2

w

ig

w

ig
w

Q

i
i

A
F

A
pM     (35) 

 where 

2

22

2

||

2

22

2

22

0

2

22

0
2

22

11

)
2

||
1()

2

||
(

!

1
     

)
2

||
(

!)1()2(

)1()2(
)

2

||
:1:2( 

W

Ig A

W

igi

W

ig

i

i

W

ig

iw

ig

e
AA

i

i

A

ii

iA
F

 (36) 

Thus,

      aApM gwi

w

g

w

Q

i
i

222

2

2

2

1
2 2)

2
1(2              (37) 

Similarly the fourth absolute moment of isnr
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 In practice,  and  are replaced by their estimates.  2M 4M

4. SIMULATION AND NUMERICAL RESULTS 

To demonstrate the proposed algorithm, consider a Nakagami-m

fading channel with Nakagami parameter 6.0m and 16-QAM 

constellation. The average SNR is changed from 4 dB to 10 dB in 

steps of 2. The Monte Carlo simulation results are shown in Table 1. 

It is observed that the estimated average SNR is close to the true 

SNR and the variance of the error remains small.  

True SNR (dB) 4 6 8 10

Estimated SNR 3.93 5.78 8.12 10.04

MSE 0.103 0.32 0.23 0.37

Variance
2
e

0.1 0.43 0.56 0.57

lTable 1. Simu ation Results

5. CONCLUSION 

In this paper, an algorithm has been developed to estimate the 

average SNR of a Nakagami-m fading channel in the presence of 

additive white Gaussian noise. The proposed algorithm works for 

any arbitrary constellation except M-ary PSK. The inputs to the 

algorithm are the second and fourth absolute moments of the 

envelope of the received signal. These statistics are estimated by 

calculating sample moments of the envelope of the received signal 

over a block of data. The algorithm assumed knowledge of the 

Nakagami parameter m. Work is underway to come up with an 

algorithm for joint estimation of the average SNR and the Nakagami 

parameter m.
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