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ABSTRACT

Although Stochastic Context-Free Grammars (SCFGs) appear prom-
ising for recognition of radar emitters, and for estimation of their
level of threat in Radar Electronic Support (ES) systems, well-known
techniques for learning their production rule probabilities are com-
putationally demanding, and cannot efficiently reflect changes in op-
erational environments. Some techniques have been proposed for
fast learning of SCFGs probabilities, yet, of those, only the HOLA
technique can perform learning incrementally. In this paper, two
incremental versions of the graphical EM (gEM) technique are pro-
posed. The incremental gEM (igEM) and on-line incremental gEM
(oigEM) allow for adapting production rule probabilities from new
data, without having to retrain from the start on all accumulated
training data. These new techniques are compared to HOLA us-
ing radar signal data. An experimental protocol has been defined
such that the impact on performance of factors like the size of new
data blocks for incremental learning, and the level of ambiguity of
MFR grammars, may be observed. Results indicate that, contrary
to HOLA, incremental learning of training data blocks with igEM
and oigEM provides the same level of accuracy as learning from all
cumulative data from scratch, even for small data blocks. As ex-
pected, incremental learning significantly reduces the overall time
and memory complexities.Finally, it appears that while the compu-
tational complexity and memory requirements of igEM and oigEM
may be greater than that of HOLA, they both provide a higher level
of accuracy.

Index Terms— Radar electronic support, pattern recognition,
stochastic grammars, incremental machine learning, graphical EM

1. INTRODUCTION

Radar Electronic Support (ES) involves the passive search for, in-
terception, location, analysis and identification of radiated electro-
magnetic energy for military purposes. ES thereby provides valu-
able information for real-time situation awareness, threat detection,
threat avoidance, and timely deployment of counter-measures [10].
Two critical functions of ES are the recognition of radar emitters
associated with intercepted pulse trains, and the estimation of the
instantaneous level of threat posed by these radars. The recent pro-
liferation and complexity of electromagnetic signals encountered in
modern environments is greatly complicating these functions.

1Corresponding author. École de technologie supérieure, 1100 rue
Notre-Dame Ouest, H3C 1K3, Montreal, Qc, tel.: 1-514-396-8650, fax: 1-
514-396-8650, e-mail: eric.granger@etsmtl.ca.

In conventional ES systems, radar signals are typically recog-
nized using temporal periodicities within the pulse train in conjunc-
tion with histograms of the pulses in some parametric space, e.g.,
carrier frequency, pulse repetition frequency, and pulse width. With
the advent of automatic electronic switching designed to optimize
radar performance, modern radars, and especially multi-function ra-
dars (MFR), are usually far too complex to be recognized in this way.
MFRs will continuously and autonomously change their transmitted
signals in response to various events in their dynamically-changing
environment. In order to exploit the dynamic nature of many mod-
ern radar systems, advanced signal processing algorithms based on
Stochastic Context Free Grammars (SCFGs) have been proposed for
modeling the behavior of radar systems [9]. Such models can al-
low tracking the dynamic behaviour of radar emitter patterns, which
can be exploited for recognition of radar emitters, and for estimation
their respective level of threat.

Given prior knowledge of a radar’s behavior, and a set of train-
ing sequences collected in the field, one challenge to the practical
application of SCFGs is the task of learning probability distributions
associated with the production rules. The most popular technique
for learning the production rule probabilities is the Inside-Outside
algorithm (IO) [1], but its application to real-world tasks is limited
due to its time and memory complexity per iteration, and conver-
gence time. Moreover, this technique cannot incrementally learn
new information that may emerge as the operational environment
evolves. In radar ES applications, new information from a battle-
field or other sources often becomes available in blocks at different
times. Incremental learning of SCFG probabilities is therefore an
undisputed asset. In this context, incremental learning refers to the
ability to adapt SCFG probabilities from new blocks of training se-
quences, without requiring access to training sequences used to learn
the existing SCFG. To accelerate IO, Sato and Kameya [8] have de-
veloped a batch learning algorithm, called graphical EM (gEM), that
re-estimates the probabilities of SCFG using a special arrangement
of the data into support graphs, based on the result from a chart pars-
ing algorithm. In addition, Oates and Heeringa [6] introduced an
incremental learning algorithm called HOLA that optimizes the rel-
ative entropy between the distribution of rules obtained after having
parsed the training set, and the distribution of rules obtained after
having parsed a set generated by the grammar.

In this paper, two novel incremental derivations of the original
gEM algorithm are proposed. The first one, called incremental gEM
(igEM), is based on research by Neal and Hinton [4], whereas the
second one, called on-line igEM (oigEM), is based on research by
Sato and Ishii [7]. Both algorithms are compared to HOLA [6].
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Given the need for a learning procedure that offers both accurate
results and computational efficiency, the performance of these tech-
niques is examined from several perspectives – perplexity, conver-
gence time, time complexity, and memory complexity. The data sets
used in our proof-of-concept computer simulations describe elec-
tromagnetic signals transmitted from fictitious multifunction radar
systems. An experimental protocol has been defined such that the
impact on performance of factors like the size of new data blocks
for incremental learning, and the level of ambiguity of grammars,
may be observed. Simulation results and complexity estimates are
analyzed with ES applications in mind.

The rest of this paper is structured into four sections as follows.
The next section provides some background information on gram-
matical modeling in the context of radar ES applications. In Sec-
tion 3, the main features of igEM and oigEM are outlined. Then, the
experimental protocol, data sets, and performance measures, used to
compare these techniques are described in Section 4. Finally, the
results of computer simulations and complexity estimates are pre-
sented and discussed in Section 5.

2. GRAMMATICAL MODELING IN RADAR ES

In radar ES applications, pulsed radar signals are generated by aMFR
in reaction to its current operating environment. The algorithm con-
trolling the function of a MFR is designed according to stochastic
automata principles, and the state transitions within the automata are
driven by the stochastic behavior of the targets [9]. It is often pos-
sible to partition a radar signal into words, which can be defined as
static or dynamically-varying groups of pulses that a MFR emits in
different states. When the radar is in a given state, it emits a partic-
ular sequence of words, whose number and structure vary according
to the MFR.

At a word level, most MFR systems of interest have a natural and
compact description in terms of a type of grammar called Context-
Free Grammars (CFG) [2]. A CFG G consists of a vocabulary of
terminal symbols along with a set of non-terminal symbols, and a
set of production rules. Each production rule represents a substi-
tution of the form A → λ where A is a nonterminal symbol and
λ is a specified sequence containing terminal symbols, nonterminal
symbols or both. A sequence of terminal symbols is in the language
defined by G if it can be generated from a uniquely specified start-
ing non-terminal by some sequence of substitutions permitted by the
production rules. Grammatical modeling of a radar system’s behav-
ior is achieved if one assumes that symbols of the vocabulary corre-
spond to words of a specific MFR, and that the language represents
all possible combination of sequences that a radar could ever emit.

To allow for robust modeling of the random events, signal degra-
dations, noise and other sources of uncertainty, an element of stochas-
ticity can be introduced. A Stochastic CFG (SCFG) Gs is a CFG
in which each production rule is assigned a production probability
θ(A → λ) ≥ 0, such that

∑
λ
θ(A → λ) = 1 for ∀A. This results

in a probability distribution over the generated language.

3. TECHNIQUES FOR FAST INCREMENTAL LEARNING
OF SCFG PROBABILITIES

Suppose that Ω is a specified training set of sequences of termi-
nal symbols. The problem of learning production probabilities of
a SCFG Gs from Ω can be naturally formulated as a maximization
of the joint likelihood P (Ω,ΔΩ|Gs) =

∏
x∈Ω P (x,Δx|Gs) where

Δx represents the set of derivation trees over a sequence x ∈ Ω, and

P (x,Δx|Gs) represents its overall probability. Here,ΔΩ represents
the set of all derivation trees over the sequences in Ω.

The Expectation-Maximization (EM) algorithm can be applied
to learn SCFG probabilities [5] by optimizing P (Ω,ΔΩ|Gs) with
respect to the production probabilities θ(A → λ). The E-step con-
sists of computing the frequencyN(A→ λ, dx) of each rule in each
derivation tree dx ∈ Δx, and the probability of each derivation tree
P (x, dx|Gs), in order to evaluate:

η(A→ λ) =
∑
x∈Ω

∑
dx∈Δx

N(A→ λ, dx)P (x, dx|Gs)

P (x,Δx|Gs)
(1)

The M-step uses η to re-estimate the probabilities:

θ′(A→ λ) =
η(A→ λ)∑
μ η(A→ μ)

(2)

Note that η represents a vector of sufficient statistics for θ(A →
λ), meaning that all information about θ(A → λ) is contained in
η(A→ λ).

The graphical EM algorithm (gEM), proposed by Sato [8] uses a
special arrangement of the results from a CYK or Earley chart parser
applied on the training data set, called support graphs, to acceler-
ate the re-estimation of production rules. During the E-step, gEM
computes η(A → λ) using the support graphs instead separately of
computing the different elements of Eq. 1. The M-step simply ap-
plies Eq. 2. The rest of this section presents two derivations of gEM
that are suitable for incremental learning in radar ES applications.

Incremental gEM (igEM): Neal and Hinton [4] have intro-
duced an algorithm called incremental EM. According to this al-
gorithm, the original dataset Ω is divided into blocks Ωi, for i =
1, ..., n, and, for each block, the vectors of sufficient statistics are
initialized to an initial guess ηi. After selecting a block Ωi to be up-
dated, the E-step computes η′

i on this block, sets η
′

j = ηj for j �= i,
and computes η′ =

∑n

k=1 η
′

k. The M-step re-estimates the prob-
abilities that optimize likelihood given η′. Note that this algorithm
is not incremental in the sense considered in this work, since all the
data Ω must be available for the M-step. Blocks of data for train-
ing are selected either sequentially, at random, or through a special
scheme for which the algorithm has not yet converged. The new
igEM algorithm is a fully incremental approximation of the above
algorithm applied to SCFG learning. Consider that the SCFG proba-
bilities have previously been learned from a block of sequences Ω1,
and that the final value of η, referred to as η1, is stored. Then, to
learn a new block Ω2, the E-step determines η from Ω2, and then
computes η′ = η + η1. The M-step re-estimates the probabilities θ
using Eq. 2. Once convergence is reached, η2 = η′ is stored, and
another block may be learned.

On-line incremental gEM (oigEM): Sato and Ishii [7] have
proposed an on-line version of the EM algorithm for normalized
Gaussian networks. The batch EM algorithm for this task involves re-
estimating a parameter using a combination of the weighted means
f∗ over n samples for specific functions f :

f
∗
=
1

n

n∑
i=1

f(xi)P (Zi|xi, θ) (3)

where {xi} is a set of observed variables and {Zi} is a set of unob-
served ones. In our context, they correspond to the sequences and the
associated derivation trees, respectively. The weighting probability
P (dx|x, θ) then corresponds to the probability of having a particu-
lar derivation tree dx, knowing x and θ. The on-line version of this
algorithm consists in computing an approximation of the weighted
mean on the i + 1th sample based on the one on the ith sample,
according to:

f̃
(i+1)

= f̃
(i)
+ χ(i+ 1)

(
f(xi+1)P (Zi+1|xi+1, θ(i))− f̃

(i)
)

(4)
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where χ is a learning rate. This principle may be applied to gEM by
identifying f with the frequency of the rules,N . Indeed, Bayes’ the-
orem gives the relation betweenN∗ and η for a particular production
rule A→ λ:

N
∗
(A → λ) =

1

|Ω|

∑
x∈Ω

∑
dx∈Δx

N(A → λ, dx)P (dx|x,Gs) =
η(A → λ)

|Ω|

(5)
Note that this algorithm is a sequential on-line algorithm that should
be applied to each sequence of the training dataset, and from one it-
eration to the next until convergence is attained. The new oigEM
algorithm is an adaptation of the above algorithm to incremental
learning of SCFG probabilities. Suppose that training has already
been successfully performed on the first block Ω1, and that, for each
rule r = A → λ, Ñ(r)(1) – the final value of Ñ(r) – is stored. In
order to learn a new block Ω2, Ñ(r)(2) can be computed according
to:

Ñ(r)
(i+1)

= Ñ(r)
(i)
+ χ(i+ 1)

(
ηi+1(r)

|Ωi+1|
− Ñ(r)

(i)

)
(6)

and probabilities are re-estimated by replacing η by Ñ in Eq. 2.
The main difference between igEM and oigEM lies in the fact

that oigEM is parametrized by learning rate χ. This parameter al-
lows to tune the algorithm to be more or less adaptive for new infor-
mation while training a SCFG. By setting χ(i+1) = χ(i)

1+χ(i)
, igEM

and oigEM become identical.

4. EXPERIMENTAL METHODOLOGY

In order to characterize the performance of the techniques presented
in Section 3, two fictitious MFR systems called Mercury and Pluto
were considered [3]. The Mercury MFR can be in one of five func-
tional states – Search (S), Acquisition (Acq), Non-Adaptive Track
(Na), Range Resolution (Rr), and Track Maintenance (Tm). If the
radar is in S, it can remain there, or move to Acq once a target is de-
tected. The target acquisition cycle involves transitions from Acq,
to Na, to Rr, and finally to Tm. The radar can remain in any of
these states indefinitely. Acq or Tm can be abandoned at any point,
at which time the radar returns to S. The Pluto MFR operates ex-
actly the same way, except that it does not pass by the Acq state.
A word-level CFG was designed for each MFR from its functional
description. Mercury and Pluto respectively represent low- and high-
ambiguity grammars.

The transition probabilities needed to design a SCFG were lear-
ned according to either igEM, oigEM and HOLA [6] techniques
through computer simulation. A synthetic radar data set was gener-
ated for each MFR. It consisted of 300 sequences, each correspond-
ing to a sequence of words that might be produced during one target
detection, while switching through all internal states, starting and
ending in S state. Mercury sequences had a size ranging from 108
to 1540 words, with an average of 588 words, while Pluto sequences
had a size that ranged from 397 to 953 words, with an average of
644 words. The duration of each state was set using gaussian dis-
tributions. Prior to simulation trials, the data set for each MFR was
partitioned into four equal parts - a training subset Train (Ω), a
validation subset Val, and a test subset Test. Finally, the Train
set for each MFR was subdivided into a certain number of blocks Ωi

of either 5, 10, 20, 25 or 50 sequences.
During each simulation trial with a block size |Ωi|, training was

performed over several training iterations with the first block of data,
until the log-likelihood for two consecutive iterations was lower than
0.001. Over-training was avoided using Val. Once convergence is
reached for the first block, the second one is learned in the same way,
and so on. For a new block, each trial was replicated for 10 different
random initializations of the probabilities.

The average performance of techniques was compared in terms
of the amount of resources required during training, measured with
the overall time (Ttot) and memory (Mtot) complexity and the con-
vergence time (I), and the accuracy of results, assessed using the
perplexity (PP ) – on the test sets. Definitions of these measures can
be found in [3].

5. RESULTS AND DISCUSSION

Fig. 1 shows the average perplexity achieved by a SCFG obtained
by incremental learning with igEM, oigEM and HOLA for different
block sizes |Ωi| of the Mercury and Pluto data. Assuming that the
environment is static, and that a block Ωi is representative of the
environment, performance depends heavily on its size |Ωi|. If Ωi is
large enough, the SCFG will be well defined. With Mercury data,
the perplexity of a SCFG obtained from either igEM or oigEM tends
towards the behaviour that could be achieved through batch learning
on one single cumulative block of data, even for small block sizes.
It appears that |Ωi| = 25 sequences is required to reach the lowest
possible perplexity. At that point, incremental learning with igEM
or oigEM gives the same performance as batch learning with gEM1.
In contrast, the perplexity of a SCFG obtained with HOLA never
tends towards that of a SCFG trained though learning on a one single
cumulative block.

The ambiguity of the Pluto grammar is greater, yet its complex-
ity is lower. With Pluto data, the perplexity of a SCFG obtained by
incremental learning with either igEM or oigEM also tends towards
the behaviour of a SCFG obtained by batch learning with gEM. It
appears that a |Ωi| = 5 sequences is sufficient to reach the lowest
possible perplexity. At that point, incremental learning with igEM or
oigEM gives the same result as batch learning with gEM. In contrast,
HOLA requires at least a training block size of 20 sequences to con-
verge. The fact that HOLA converges for Pluto and not for Mercury
may be linked to the lower number of production rules with Pluto.
Tuning the learning rate χ of oigEM does not have a significant im-
pact on the overall perplexity when using training blocks larger than
10 sequences. For training block sizes of 5 and 10 sequences, it ap-
pears that the perplexity is less stable if χ is high. Indeed, increasing
the value of χ assign a greater importance to the new data in the
learning process.magnitude.

The average convergence time on the Mercury data ranges from
4.6 to 5.2 iterations across block sizes for each algorithm. With the
Pluto data (whose grammar is more ambiguous than that of Mer-
cury), some significant differences appear. Increasing the block sizes
from 5 to 50 multiply the convergence time by 2 for igEM and
oigEM, while it divides it by 3 for HOLA. Finally, igEM and oigEM
have similar convergence times when χ = 0.25, but it tends to in-
crease as χ grows beyond 0.25, since the higher χ is, the more prob-
abilities are adjusted to new data.

The difference between gEM, igEM and oigEM lies only in the
re-estimation equation, and has no influence on T and M , which
are the same for these three algorithms, and have already been stud-
ied in [3]. An overall measure of the complexity needed to learn
a block of training sequences would however reveal the impact on
performance of incremental learning. The overall time and memory
complexities needed to learn a block Ωi are Ttot = T · ΓT · I and

1Note that igEM and oigEM are equivalent to gEM when used for batch
learning of a single block of data. Therefore, the first point of each igEM and
oigEM curve in Fig. 1 corresponds to the performance of gEM. That is one
can compare the perplexity of a SCFG trained with gEM on one block of n
sequences to that of a SCFG trained with igEM or oigEM on two blocks on
n/2 sequences.
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Fig. 1: Average perplexity versus training set size of SCFGs ob-
tained by learning of blocks of Mercury data – (a), (c), (e), and (g)
– and of Pluto data – (b), (d), (f), and (h). (Error bars are standard
error of the sample mean).

Mtot = M · ΓM · I , where ΓT and ΓM are multiplicative factors
that depend on the size of |Ωi|, and T andM are the time complex-
ity per iteration and the memory complexity. Consider that training
has already been completed on a dataset Ω for gEM, divided into
blocks Ωi for the incremental algorithms, and that each new block
was available once training was completed on the previous ones. ΓT

and ΓM are presented in Table 1. Results indicate that incremental
learning provides a considerable saving in terms of computational
resources. In addition HOLA provides the lowest overall time and
space complexities as it is bounded by the numbers of SFCG rules
and is independent of Ωi.

6. CONCLUSION

In this paper, two incremental alternatives to the gEM technique
have been proposed for learning the production rule probabilities of
SCFGs, in order to recognize multi-function radar (MFR) systems
and estimate their states in ES applications. These two techniques
are the incremental gEM (igEM), and the on-line incremental gEM
(oigEM). As the original gEM, they rely on the pre-computation of
data structures to accelerate the probability re-estimation process.
However, they also allow integration of new blocks of training se-

gEM igEM and oigEM HOLA
ΓT

∑n

j=1

∑j

i=1 |Ωi|
∑n

i=1 |Ωi| constant
ΓM

∑n

i=1 |Ωi| |Ωn| constant

Table 1: Overall time and memory complexities.
quences, without re-training from the beginning using all previously
accumulated data. The performance of these two techniques has
been compared with HOLA in terms of resource allocation and accu-
racy. An experimental protocol has been defined to assess impact on
performance of different sizes of the successive training blocks, and
the level of ambiguity of MFR grammars. Proof-of-concept com-
puter simulations have been performed on using synthetic radar data
from different types of MFR systems.

Results indicate that incremental learning of data bocks with
igEM and oigEM provides the same level of accuracy as learning
from all cumulative data from scratch, even for small data blocks.
As expected, incremental learning significantly reduces the overall
time and memory complexities. The igEM and oigEM algorithms
systematically provide a higher level of accuracy than HOLA, espe-
cially for small block of data. Unless the MFR system is modeled
by a very ambiguous SCFG, these techniques can learn probabili-
ties rapidly, at the expense of significantly higher memory resources.
The execution time and memory requirements of HOLA are orders
of magnitude lower than that of igEM and oigEM.
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