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ABSTRACT

This paper addresses the problem of estimating a common modu-

lation from a group of intercepted radar pulses. Estimated mod-

ulation profile operates as the basis for specific emitter identifica-

tion (SEI). A robust M-estimation technique using scaled conjugate

gradient algorithm for improving the frequency alignment of the

pulses is proposed. In addition, postprocessing of the estimated

modulation profiles for identification is considered. Simulation ex-

periments are conducted in order to compare the performance with

previously proposed methods. Results show that the proposed ro-

bust M-estimation technique provides improved performance at low

signal-to-noise ratio regime due to better frequency alignment of the

intercepted pulses.

Index Terms— M-estimation, radar, robustness, scaled conju-

gate gradient, specific emitter identification

1. INTRODUCTION

Specific emitter identification is an important task in spectrum mon-

itoring and electronic warfare. It is a crucial component in threat

detection and analysis in electronic support (ES). Both intentional

and unintentional modulations in the radar signals provide impor-

tant information to perform SEI. Different intrapulse information

based approaches have been proposed for SEI during the past few

years. Intrapulse information based clustering and determination of

the number of emitters from a set of collected pulses using an infor-

mation theoretic criterion has been proposed in [1]. Feature based

approach for SEI has been proposed in [2]. Time-frequency distrib-

ution based approach was considered in [3].

In [4] a maximum likelihood (ML) estimation method was pro-

posed for estimating a common modulation from a group of in-

tercepted pulses. Furthermore, hypothesis testing based technique

was proposed for identifying radar emitters. In order to robustify

the process, an M-estimation technique for estimating the common

modulation from a group of intercepted radar pulses was proposed

in [5]. The technique was shown to provide better tolerance against

preprocessing errors than the ML estimator. In this work, the M-

estimator using equal weights within pulses [5] is extended by using

scaled conjugate gradient (SCG) algorithm to improve the frequency

alignment of the pulses. In addition, a postprocessing method is

introduced in order to further improve the frequency alignment for

identification purposes. Simulation results indicate that improved

frequency alignment and thus better estimation performance is achieved

compared to the previous ML and M-estimation methods.

This work has been funded by the Finnish Defence Forces Technical
Research Centre.

The paper is organized as follows. Section 2 presents the signal

model. Section 3 explains the preprocessing stage and Section 4 in-

troduces the proposed M-estimation algorithm. Section 5 describes

the postprocessing stage. The simulation results are presented in

Section 6. Finally, Section 7 gives the conclusion.

2. SIGNAL MODEL

In the following it is assumed that the sampling rate is high enough

to record the pulse modulations faithfully. Moreover, it is assumed

that each intercepted pulse consists of NS complex samples from a

single mode of a radar including a buffer of samples recorded before

and after the pulse.

The complex pulse vectors yk from the same emitter are as-

sumed to be given by [4]

yk = AkT (τk)Ω(ωk)μ + εk, k = 1, . . . , NP , (1)

where Ak are the complex amplitudes of the pulses and μ is a fixed

unit vector representing the basic pulse modulation. The parame-

ters τk and ωk are the circular time and frequency shifts required to

align the kth pulse with μ. The εk are independent circular com-

plex Gaussian distributed random vectors satisfying E(ε) = 0 and

E(εεH) = σ2I . E(·) denotes the expectation operator, (·)H de-

notes the conjugate transpose, and σ2 is the noise variance assumed

to be known. I is an NS × NS identity matrix. Note that the

Gaussian distribution is chosen only as the nominal noise distrib-

ution.

The time and frequency shift operator matrices T (τ ) and Ω(ω)
are given by [4]

Ω(ω)kn = exp(−jnω)δkn, (2)

T (τ ) = F
−1

Ω(2πτ )F , (3)

where δkn is the Kronecker delta, j is the imaginary unit, and F

denotes the discrete Fourier transform matrix

Fkn = exp(−j2πkn/NS)/
√

NS. (4)

Before the pulse modulation is estimated, the pulses are pre-

processed in order to align the pulses in time and frequency. In

this work, the time alignment of the pulses after the preprocessing

is assumed to be exact. However, as an extension to our previous

work [5] the pulses are not assumed to be perfectly aligned in fre-

quency. That is, the signal model after the preprocessing is assumed

to be given by

zk = AkΩ(νk)μ + ε
′

k, k = 1, . . . , NP , (5)
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where νk is the remaining frequency offset of the kth pulse after the

preprocessing. Since matrices T (τ ) and Ω(ω) are unitary, the noise

distribution remains the same.

3. PREPROCESSING

In this work the preprocessing proposed in [5] is employed. First the

carrier frequencies of the pulses are estimated using the Lank, Reed,

Pollon frequency estimator given by [6]

ω̂yk
= ∠

NSX
n=2

yk(n)y∗k(n− 1), (6)

where ∠ denotes the phase angle, and ∗ denotes the complex con-

jugate. After carrier frequencies have been estimated, the pulses are

transferred to the baseband

zk(n) = Ω(ω̂yk
)H

yk, k = 1, . . . , NP . (7)

Carrier frequency offset νk = ωk − ω̂yk
remains in the baseband

pulses. Note that due to the symmetry of the matrices T (τ ) and

Ω(ω) their order in (1) is interchangeable.

For the time alignment, the pulses zk, k = 1, . . . , NP , are first

rank ordered into a descending order based on signal-to-noise ratio

(SNR), i.e. the pulse z1 has the largest SNR while the pulse zNP

has the smallest SNR. Then the pulses are aligned in time according

to the following procedure [5]:

For k = 2, . . . , NP ,

1. Calculate cj(τ ) = |zH
j (0)zk(τ )|, τ = 0, . . . , NS − 1,

for all j = 1, . . . , k−1. Here zk(τ ) denotes τ samples

circularly shifted version of zk.

2. Time shift of the kth pulse is given by

τ̂k = arg maxτ

Pk−1
j=1 cj(τ ).

3. Shift the kth pulse circularly τ̂k samples, i.e. zk =
zk(τ̂k).

At high SNR regime the computational complexity of the time

alignment can be reduced by employing adaptive thresholding of

the leading edge of the pulse [7] to obtain initial estimates for the

time parameters τk. Starting from the initial estimates the cross-

correlations in Step 1 of the above algorithm can be calculated only

for small time shifts (i.e. a few samples left or right).

4. M-ESTIMATION ALGORITHM

The goal in the algorithm proposed in this section is to improve the

frequency alignment of the pulses after preprocessing while main-

taining robustness against preprocessing errors. Misaligned pulses

cause large errors that are not well represented by the Gaussian noise

model. M-estimators reduce the effect of large errors by minimizing

a function of residual errors that bounds the influence of the large

errors. In the following, an M-estimator that uses pulse weights (i.e.

common weight parameter for all the samples in a pulse) for reduc-

ing the influence of misaligned pulses is derived.

The task is to find M-estimates for μ, Ak’s, and νk’s. In the fol-

lowing this is realized by using a combination of an iterative reweighted

least-squares (IRLS) procedure and SCG algorithm. The idea is to

use SCG to update the νk’s, and at each iteration of the SCG to use

the IRLS procedure to calculate the estimates for μ and Ak’s while

keeping the νk’s fixed. The IRLS procedure to calculate the esti-

mates for μ and Ak’s is given as follows (νk’s are kept fixed)

1. Initialize weights wk = 1, k = 1, . . . , NP , and set i = 0.

2. Minimize the following weighted least-squares criterion

f =

NPX
k=1

wk||zk − AkΩ(νk)μ)||2, (8)

in order to get μ̂(i+1) and Â
(i+1)
k , k = 1, . . . , NP .

3. Recalculate the weights

wk = w

 
||zk − Â

(i+1)
k Ω(νk)μ̂(i+1)||

σ
√

NS

!
.

4. If the change in the error is small, stop, i.e., if

L(i)/L(i+1) < 1 + β,

where L(i) =
PNP

k=1 ||zk − Â
(i)
k Ω(νk)μ̂(i)||2 and β is a

small number, e.g. 0.001. Otherwise i = i + 1 and go back

to Step 2.

The w(r) is called the weight function. The Huber weight function

used in this work is given by [8]

w(r) =

(
1, for |r| < k

k/|r|, for |r| ≥ k,
(9)

where k is tuning constant. Value k = 1.345 was experimentally

selected for the simulations. The residual errors are normalized wrt.

scale σ, i.e. the standard deviation of the noise which is assumed

to be known. If σ is not known a simple and robust estimate of the

scale is the MAD estimator [8].

In Step 2 of the above IRLS procedure, the task is to minimize

the following weighted least-squares criterion

f =

NPX
k=1

wk(||zk||2−|μH
Ω(νk)H

zk|2 + |Ak−μ
H
Ω(νk)H

zk|2).
(10)

From (10), it can be easily seen that f is minimized wrt. Ak by

choosing

Âk = μ
H
Ω(νk)H

zk, k = 1, . . . , NP . (11)

A reduced cost function is obtained by substituting Ak in (10) by Âk

f ′ =

NPX
k=1

wk(||zk||2 − |μH
Ω(νk)H

zk|2). (12)

Minimizing (12) wrt. μ is equivalent to maximizing

NPX
k=1

wk|μH
Ω(νk)H

zk|2 = μ
H

 
NPX
k=1

wkΩ(νk)H
zkz

H
k Ω(νk)

!
μ

= μ
H

ZΩμ.
(13)

The above expression is maximized if μ is equal to the eigenvector

of ZΩ corresponding to the largest eigenvalue [9, p. 176]. The eigen-

vector can be solved iteratively by employing the power method, i.e.

μ̂l+1 = ZΩμ̂l =

NPX
k=1

wk

“
z

H
k Ω(νk)μ̂l

”
Ω(νk)H

zk, (14)

μ̂l+1 = μ̂l+1/||μ̂l+1||. (15)

II  298



What remains to be done, is to find the estimates for the νk’s.

This is done by minimizing (10) with respect to νk’s. In order to do

this, a gradient-based algorithm is employed. The gradient of (10) is

∇νk
f =

∂f

∂νk

= −wkA∗kμ
H ∂Ω(νk)H

∂νk

zk − wkAkz
H
k

∂Ω(νk)

∂νk

μ,

(16)

where the partial derivatives
∂Ω(νk)

∂νk
are

∂Ω(νk)kn

∂νk

= −jn exp(−jnνk)δkn = −jnΩ(νk)kn. (17)

Now by denoting Ωn(ν)kn = nΩ(ν)kn, it follows

∇νk
f = −jwkA∗kμ

H
Ωn(νk)H

zk + jwkAkz
H
k Ωn(νk)μ,

= −2Im{wkAkz
H
k Ωn(νk)μ}, k = 1, . . . , NP , (18)

where Im{·} denotes the imaginary part.

Now the Hessian is obtained as

∇2
νkνk

f =
∂2f

∂ν2
k

= 2Re{wkAkz
H
k Ωnn(νk)μ}, k = 1, . . . , NP ,

(19)

∇2
νkνi

f =
∂2f

∂νk∂νi

= 0, ∀ k �= i, (20)

where Re{·} denotes the real part, and Ωnn(ν)kn = n2
Ω(ν)kn.

In this work the simple, yet effective, scaled conjugate gradi-

ent (SCG) algorithm [10] is employed for finding the optimum fre-

quency vector ν containing the unknown parameters νk, k = 1, . . . ,

NP . The SCG algorithm is briefly explained in the following.

The conjugate gradient methods minimize a differentiable func-

tion f : R
NP → R iteratively as follows

νj+1 = νj + λjdj , (21)

where dj is the search direction and λj is the step size which mini-

mizes f(νj + λdj). For the first iteration, the negative gradient can

be selected as the search direction, i.e. d1 = −∇f(ν1). For the

subsequent iterations, the search directions are

dj+1 = −∇f(νj+1) + αjdj (22)

where αj is a suitable deflection parameter that characterizes a par-

ticular conjugate gradient method. The Polak-Ribiere conjugate gra-

dient used in this work is given by [11, p. 329]

αj =
∇f(νj+1)

T (∇f(νj+1)−∇f(νj))

||∇f(νj)||2 . (23)

The SCG algorithm avoids the time consuming line search procedure

of the conventional conjugate gradient algorithms to find λj in (21).

In the SCG the step size λj is obtained by minimizing a quadratic

approximation to the function f(νj +λjdj) with respect to λj . The

step size is given by [10]

λj = − dT
j ∇f(νj)

dT
j Hdj + γj ||dj ||2 (24)

where H is the Hessian matrix and γj ≥ 0 is sufficiently large

diagonal loading factor that ensures the positive definiteness of the

Hessian. That is, the Hessian matrix becomes H + γjI . For a

detailed description of the selection of the value for γj as well as

description of the whole SCG algorithm, see [10].

A summary of the method for estimating a common modulation

from a group of pulses using SCG is given below (Â is a vector

containing the amplitude estimates):

1. Initialize ν̂1 = 0 and μ̂
(1)
1 = zmax/||zmax|| where zmax is

the pulse having the largest SNR.

2. Estimate μ̂1 and Â1 using the IRLS procedure.

3. Initialize d1 = −∇f(Â1, ν̂1, μ̂1) using (18).

4. Update ν̂j+1 = ν̂j + λjdj where λj is given by (24).

5. Estimate μ̂j+1 and Âj+1 using the IRLS procedure. Initial-

ization μ̂
(1)
j+1 = Ω(ν̂max,j+1)

Hzmax/||Ω(ν̂max,j+1)
Hzmax||

where ν̂max,j+1 is the current estimate of the frequency offset

of pulse zmax.

6. Update dj+1 = −∇f(Âj+1, ν̂j+1, μ̂j+1)+αjdj where αj

is given by (23).

7. If converged stop (i.e. if the change in the error or in the

search direction is smaller than a predefined threshold). Oth-

erwise go to Step 4.

During the running of the SCG algorithm, the conjugacy of the search

directions tends to deteriorate. Therefore, it is recommended to

restart the algorithm after every NP steps. That is, the search vector

is reset to the negative gradient direction after every NP steps.

Note that each time the IRLS procedure is used, the weights are

initialized to one and μ is initialized to the pulse having the largest

SNR (with the current frequency alignment estimate). This strategy

was chosen in order to avoid getting stuck in local minima.

5. POSTPROCESSING

The Lank, Reed, Pollon carrier frequency estimator in combination

with the SCG algorithm can result in a small residual carrier fre-

quency offset in the final pulse modulation estimate. In addition, the

time location of the pulse within the pulse vector can vary. In order

to improve the identification performance the following postprocess-

ing steps are proposed.

The alignment for comparison of two pulse modulation esti-

mates μ̂1 and μ̂2 proceeds as follows. First the estimates μ̂1 and

μ̂2 are aligned in time domain based on cross-correlation (i.e. time

shift giving the largest cross-correlation is chosen). Then, in order

to align the estimates μ̂1 and μ̂2 in frequency domain, the following

cost function is minimized wrt. ω

1− |μ̂H
1 Ω(ω)H

μ̂2|2, (25)

using quadratic fit line search algorithm [11, p. 280].

In the simulation experiments μ̂1 is the true modulation profile

and μ̂2 is the obtained estimate.

6. SIMULATION RESULTS

The performance of the proposed M-estimation technique is investi-

gated in this section using simulation experiments. The performance

is compared to the ML [4] and M-estimation [5] methods. All the

methods use the pre- and postprocessing procedures presented in this

paper. Two test pulses are used. The first pulse is a linear frequency

modulated (LFM) pulse given by

μ0(n) = exp

„
j2π(− 1

24
n +

125

432
× 0.001n2)

«
, n = 0, . . . , 143.

The second pulse has a sinusoidal frequency modulation (FM) (i.e.

nonlinear frequency modulation) given by

μ0(n) = exp

 
j2π × 0.02

nX
k=0

sin(2πk/140)

!
, n = 0, . . . , 120.
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(b) Sinusoidal FM

Fig. 1. (1 − |μH
trueμ̂|2) vs. SNR for the ML and M-estimators for

30 (a) LFM and (b) sinusoidal FM pulses. The M-estimator using

SCG has better performance at low SNR regime due to improved

frequency alignment of the pulses.

The norms of the pulses are normalized to one. Both pulses have

rise and fall times of 1/12 and 1/4 of the pulse length, respectively.

Raised cosine model is used for pulse shaping.

Figs. 1 and 2 depict the estimation performance as a function of

the SNR and number of intercepted pulses, respectively. The curves

are averages over 500 simulation experiments.

7. CONCLUSION

In this paper a robust M-estimation technique for estimating a com-

mon modulation from a group of intercepted pulses was proposed.

The proposed technique uses SCG algorithm for improving the fre-

quency alignment of the pulses. Simulation experiments showed

that the proposed technique provides better performance at low SNR

regime than the previously proposed ML and M-estimation tech-

niques. This is due to the better frequency alignment of the pulses

obtained by the use of SCG algorithm.
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