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Rémi DURAND ∗†, Guillaume GINOLHAC †, Laetitia THIRION ∗, Philippe FORSTER †

∗ SONDRA / SUPELEC

3 rue Joliot Curie, Plateau du Moulon, 91192 Gif sur Yvette - FRANCE

Tel: +(00 33) 1 69 85 18 13

email: remi.durand@supelec.fr
† GEA - University Paris 10

PST Ville d’Avray, 92410 Ville d’Avray - FRANCE,

email: guillaume.ginolhac@u-paris10.fr

Abstract— This paper deals with two new SAR processors
based on CFAR subspaces detector. These two algorithms
aim at improving man made targets detection performances
in a forest clutter by using electromagnetic scattering models.
The implementation of the two detectors is described. An
application on simulated data shows the interest of the two
methods.

Index Terms: Detection, SAR, Subspace Detector, FOPEN,

SAR processor.

I. INTRODUCTION

The detection of Man Made Targets (MMT) embedded

in noise, clutter or speckle in SAR images is a current

issue which concerns both SAR and signal processing

communities. In a forest, it is possible to detect a MMT by

using VHF-UHF (50 MHz to 1 GHz) waves to penetrate

canopy. Unfortunately, at those frequencies, trunks remain

high false alarm sources which must be treated, either

by increasing the MMT response or by decreasing the

forest clutter. In a previous paper [1], we focused on the

first approach and proposed a new SAR processor. We

demonstrated that classical SAR processors are detectors

matched to isotropic points. These algorithms clearly do

not use targets scattering properties. Assuming that MMT

are single or set of canonical elements (eg. plates) with

unknown orientations, we developed a subspace detector

matched to these canonical elements responses and in-

cluded it into the SAR processing. The processor obtained

was called Subspace Detector SAR (SDSAR) algorithm (or

quite recently Signal Subspace Detector SAR (SSDSAR)

algorithm). We simulated a simple MMT and computed

SSDSAR algorithm performance in a white Gaussian noise

[2] and in a simulated trunk forest. The improvements

obtained in terms of detection performance validated our

approach. Some additional optimizations were developed

to lower the computation task [3]. The SSDSAR algorithm

only focused on improving the detection probability of the

target by making assumptions on its scattering properties.

The medium was considered to be a white Gaussian noise.

Although performances obtained were very encouraging

when detecting a MMT in a simulated trunk forest [2]

[3], the SSDSAR algorithm can be further improved by

modelling more accurately the clutter of interest: the forest.

We set two detection hypotheses: one sets that the signal

scattered at a given position is the sum of a white Gaussian

noise plus interferences generated by trunks, the other sets

that the signal scattered is the sum of a white Gaussian

noise plus the MMT response. We develop a CFAR version

of the Generalized Likelihood Ratio Test (GLRT) to solve

this problem and include it into the SAR processing. The

SAR processor obtained is called Signal or Interference

Subspace Detector SAR (SISDSAR) processor. This paper

falls into three sections: in a first part, we present a new

CFAR version of the algorithm which allows us to ignore

the noise variance. The second part the SISDSAR algorithm

detection problem and its GLRT. The last part compares

performances obtained by CSAR, SSDSAR and SISDSAR

algorithms when detecting a simple MMT embedded in a

simulated forest.

The following conventions are adopted: italic indicates

scalar quantity, lower case boldface indicates a vector quan-

tity and upper case boldface matrix. T denotes the trans-

pose operator and † the transpose conjugate. CN(m,R)
denotes the complex Gaussian distribution with mean m

and covariance matrix R.

II. THE SIGNAL SUBSPACE DETECTOR SAR

(SSDSAR) ALGORITHM

A. Configuration

We consider a strip map SAR configuration: an airborne

antenna is moving along an axis u. A signal e(t) is emitted

towards the scene at every ui position of the antenna.

The distance between two successive positions is δu. The

received signal (raw data) at every ui position is zi(t). We

make the “stop and go” assumption: the antenna is not

moving when emitting and receiving. e and zi denote the

vectors of signal samples associated to e(t) and zi(t). Let
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z be the concatenation of n vertical vectors zi:

z ∈ C
M , z =

[
z

T
1

z
T
2

. . . z
T
n

]T
(1)

B. SSDSAR detection problem

Classical SAR (CSAR) processors assume that the target

to image is a single or a set of isotropic points. These

algorithms can be written as an isotropic point detector

[1]. This assumption does not consider targets scattering

properties. The SSDSAR algorithm sets the two following

hypothesis: for each position (x, y) to image, H0 refers to

the case where the received signal, z, is a white Gaussian

noise n, CN(0, σ2
I). H1 corresponds to the case where

the received signal is the signal scattered by a canonical

element with an unknown orientation (α, β) plus n. The

detection problem is written as follows:
{

H0 : z = n

H1 : z = as(α, β) + n
(2)

where

s(α, β) =
[
s1(α, β)T

s2(α, β)T . . . sn(α, β)T
]T

(3)

and sk(α, β) is the signal received at position uk, scattered

by the chosen model at (x, y) with an unknown orientation

α and β. The quantity a is an unknown complex attenu-

ation coefficient. If the set spanned by s(α, β) when (α,

β)∈[0, π]2, belongs to a subspace < Hxy > of dimension

DH , we can rewrite the detection problem as:
{

H0 : z = n

H1 : z = Hxyλ + n
(4)

where Hxy is an orthonormal basis (M × DH) associated

to the “subspace model” < Hxy >, and λ is the unknown

corresponding (DH × 1) coordinate vector of the signal

αs(α, β).

C. CFAR Signal Subspace Detector

As the variance σ2 is unknown, we have to develop a

CFAR test fitting with this detection problem. From [4], the

Generalized Likelihood Ratio (GLR) LSSD can be written:

L
1/M
SSD =

z
†
PHxy

z

z†P⊥
Hxy

z
+ 1 (5)

where PHxy
is the orthonormal projector onto the subspace

< Hxy >. We also have P
⊥
Hxy

= I − PHxy
. We deduce

from equation (5) that:

L
1/M
SSD − 1 =

‖H†
xyz‖

2

‖z‖2 − ‖H†
xyz‖2

(6)

.

The basis Hxy is deduced from the Singular Value

Decomposition (SVD) of the signal matrix:

Sxy = [s(α1, β1) . . . s(αi, βj) . . . s(αP, βQ)] (7)

where (αi, βj) describe [0, π2].

Sxy = USΣSV
†
S (8)

where US and VS are two orthonormal matrices and ΣS

a diagonal matrix containing the singular values. H†
xy cor-

responds to the DH first singular vectors of US associated

to the DH highest singular values.

We set the intensity of the pixel ISSDSAR(x, y) to:

ISSDSAR(x, y) =
‖H†

xyz‖
2

‖z‖2 − ‖H†
xyz‖2

(9)

III. SIGNAL OR INTERFERENCE SUBSPACE DETECTOR

SAR (SISDSAR) ALGORITHM FOR DETECTION IN A

FOREST

The SSDSAR algorithm has been developed to increase

MMT detection probability by making assumption on the

target response. No specific clutter treatment matched to

the media has been considered to decrease false alarm

probability: the clutter has only been modelled by a white

Gaussian noise. From now on, we consider that the MMT

is embedded in a forest.

A. Forest Clutter Modeling

When detection is operated on a SAR image of the

forest, false alarms are mainly due to trunks response.

Our treatment is based on this consideration: the forest

clutter will be modelled as a trunk response plus a white

Gaussian noise representing canopy response. Trunks are

modelled by a cylinder of a given size tilted of an unknown

angle δ ∈ [0, δmax] from its vertical position in a direction

defined by the rotation angle γ ∈ [0, 2π] . δmax is the

maximum tilt angle of the trunk. Considered rotation are

given in Figure 1.
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Fig. 1: Definition of the angles γ and δ

B. Detection Problem

The new two hypotheses detection problem can be

described as follows: for each position (x, y) to image, H0

refers to the case where the received signal, z, is a white

Gaussian noise n, CN(0, σ2
I), plus the signal scattered by

a vertical cylinder tilted of unknown angles (γ, delta). H1

corresponds to the case where the received signal is the

signal scattered by a canonical element with an unknown

orientation (α, β) plus n. These two hypotheses implicitly

set the assumption that a trunk and a MMT cannot be at

the same location. From section II, we have that:

H1 : z = Hλ + n. (10)

From III-A:

H0 : z = ct(γ, δ) + n (11)
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where t(γ, δ) is the signal scattered by a trunk at position

(x, y), with tilt angles defined by (γ, δ), and c a complex

attenuation coefficient. As in the previous section, if:

∀(γ, δ) ∈ [0, 2π] × [0, δmax], t(γ, δ) ∈< Jxy > (12)

where < Jxy > is a low dimensional subspace of dimen-

sion DJ defined by an orthonormal basis Jxy, the detection

problem becomes:

{
H0 : z = Jxyμ + n

H1 : z = Hxyλ + n
(13)

with μ and λ two unknown coordinates vectors. σ2, the

variance of n is also unknown.

C. CFAR Subspace or Interference Detector

As μ, λ and σ2 are unknown, we replace them by their

Maximum Likelihood Estimate (MLE) into the likelihood

ratio to get the classical GLR LSISD:

LSISD =
maxσ,λ∈CDH p(z|H1)

maxσ,μ∈CDJ p(z|H0)
(14)

For a better legibility, we set:

n̂0 = z − Jxyμ̂ (15)

n̂1 = z − Hxyλ̂ (16)

where n̂0 is the estimate of n considering H0 and n̂1 is the

estimate of n considering H1. λ̂ and μ̂ are the estimates of

λ and μ. By using notations (15) and (16) and considering

the estimates σ̂1 considering H1 and σ̂0 considering H0 of

σ, LSISD can be written as in [5]:

L
1/M
SISD =

‖n̂0‖
2

‖n̂1‖2
(17)

We can replace equations (15) and (16) by:

n̂0 = z − PJxy
z (18)

n̂1 = z − PHxy
z (19)

where PJxy
= JxyJ

†
xy and PHxy

= HxyH
†
xy are two

orthogonal projectors on subspaces < Jxy > and < Hxy >.

Finally we have:

L
1/M
SID =

‖z − JxyJ
†
xyz‖

2

‖z− HxyH
†
xyz‖2

(20)

=
‖H†

xyz‖
2 − ‖J†

xyz‖
2

‖z‖2 − ‖H†
xyz‖2

+ 1 (21)

As in section II, the subspace basis Jxy is obtained by

SVD of the following matrix:

Txy = [t(γ1, δ1) . . . t(γi, δj) . . . t(γP′ , δQ′)] (22)

= UTΣTV
†
T (23)

with (γi, δj) describing [0, γmax] × [0, 2π], UT and VT

two orthonormal matrices and ΣT a diagonal matrix

containing the singular values. J
†
xy corresponds to the DJ

first singular vectors of UT associated to the DJ highest

singular values.

We define the amplitude of the pixel ISISDSAR(x, y)
given by the SISDSAR algorithm by:

ISISDSAR(x, y) =
‖H†

xyz‖
2 − ‖J†

xyz‖
2

‖z‖2 − ‖H†
xyz‖2

(24)

IV. APPLICATION ON A SIMULATED FOREST

In this part, we assume that a Man Made Target (MMT)

is a set of metallic plates of different sizes and orientations

and trunks are tilted cylinders. The plate model has many

advantages: the scattering of a metallic plate is directive,

which is often a property of MMTs and it is an unusual

shape in a forest (very different from the vertical cylinder

we choose to model the clutter). After having simulated

a metallic box response with Feko [7] (a software based

on method of moments), we put it in a simulated trunk

forest generated by the software COSMO [8]. Then we

compare the image obtained by the CSAR, SSDSAR and

SISDSAR algorithms. Performances of these algorithms

are then discussed.

A. Simulation parameters

• Target Subspace model: The target subspace model is

generated with a 1 m× 2 m metallic plate. The code

used for the computation of the signal scattered by the

plate is based on the physical optics approximation,

which requires that its dimensions are larger than

the wavelength. The scattering matrix of a perfectly

conducting plate used to compute scattered signals is

derived from [6].

• Interference Subspace model: The Interference Sub-

space model is generated with a 10 m high cylinder

with a 25 cm radius, δmax = 10o.

• Configuration of the simulated forest: trunks are 11

meters high and have a radius of 19 centimeters.

They are separated one from others with a mean

distance of 7 meters (more or less 1 meter). Trunks

are tilted of an angle between 0 and 2 degrees (worst

case). Interactions between the target and trunks are

neglected. The scene coordinates are: x = [90, 150] m

and y = [−25, 20] m.

• Target Model: we consider the 2m × 1.5m × 1m
metallic parallelepiped, tilted of a π/9 angle around

axis z, lying on a perfectly conducting (PEC) ground,

located at (118,−1).
• Flight configuration and sampling: starting at u0 =

−50 m, ending at u200 = 50 m, δu = 0.5 m. Flight

height is 100 m. We are in a far field configuration.

• Emitted chirp: the central frequency of the chirp is

400 MHz with a bandwidth of 100 MHz. We only

consider VV polarization.

B. Low dimensional subspace hypothesis

As said previously, we assumed that both the target

model (plates) and the interference model (trunks) gener-

ated a low dimensional subspace. The subspace generated

by the plate as already been demonstrated to be low

dimensional [1]. Figure 2 represents the singular values

of Txy
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Fig. 2: Normalized Singular values associated to the
cylinder subspace

If we consider that the last relevant singular value is at

10 dB from the maximum one, the trunk subspace has 12

dimensions. The generated subspace can be considered as

a low dimensional subspace.

C. Application of the algorithms

The three different algorithms, CSAR, SSDSAR and

SISDSAR are applied to generate the image of the scene

described previously. Results are plotted respectively in

Figures 3, 4 and 5. The target is pointed on each image

by a small arrow. The improvement between the CSAR

image and the two other images is clear. From Figure 3

to Figure 4, the magnitude of pixels corresponding to the

target is significantly increased and becomes higher than

the trunks one. From Figure 4 to Figure 5, the magnitude

of the target is kept at the same level, while the magnitude

of trunks significantly decreases.

If we consider the number of false alarms pixels on

the images versus a threshold (Figure 6), the difference

between the two images is easier to quantify.

V. CONCLUSION

This article developed two new CFAR methods to in-

crease MMT detection performance. One was directly

derived from a previous work based on simple assumptions

on the MMT electromagnetic scattering properties. The

other focused on decreasing the forest clutter: a new signal

or interference subspace detector has been developed where

interferences are modelled by a cylinder subspace. Results

obtained are encouraging and tests on real data will be

proceeded.
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