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ABSTRACT

We present an algorithm for the estimation of the relative

camera position in a network of cameras with non-overlapping

fields of view. The algorithm estimates the missing trajec-

tory information in the unobserved areas of the multi-sensor

configuration using both parametric and non-parametric algo-

rithms. First, Kalman filtering is used to estimate the trajec-

tories in the unobserved regions. Next, linear regression esti-

mates the position of the target based upon the motion model

generated from the measured positions in the field of view of

each sensor. Finally, the relative orientation of the sensors

is calculated using the observed and estimated target posi-

tion from adjacent cameras. We demonstrate the algorithm

on both synthetic and real data.

Index Terms— Surveillance, distributed tracking, cali-

bration, Kalman filtering, image sensors.

1. INTRODUCTION

The use of multiple cameras in visual surveillance enables the

monitoring of wide areas and hence the detection of actions

and events of interest on a larger scale, compared to the use

of single sensors separately. To exploit multiple cameras, an

automatic mechanism is needed that fuses data from the var-

ious sensors and generates a global ground plane view of the

overall scene. The movements of the targets (trajectories) can

then be reproduced in the global view for automated event

detection or for visualization.

In many surveillance scenarios the network of cameras

does not fully cover the area to be monitored. As a con-

sequence, unobserved areas exist where target information

is missing. Moreover, the extrinsic calibration parameters

of each camera may be unknown or difficult to obtain in a

number of scenarios. Examples of such scenarios are wide

area indoor surveillance and mobile ad-hoc networks of low-

cost surveillance cameras. In these cases a solution is needed

that can estimate the missing trajectories information and the

∗The authors acknowledge the support of the UK Engineering and Physi-

cal Sciences Research Council (EPSRC), under grant EP/D033772/1

extrinsic cameras parameters to form a global ground-plane

view with complete trajectories.

The problem of Simultaneous Localization and Tracking

(SLAT) is addressed in [1] using maximum a-posteriori es-

timation (MAP) combined with Newton Raphson’s method.

Parzen windows are used in [2] to learn the camera topology

and path probabilities. First probabilities are calculated in a

training phase, and then camera correspondence is measured

using MAP estimation. Approximated Bayesian filtering is

used in [3] to provide on-line probabilistic estimates of sensor

locations and target tracks, whereas a Bayesian formulation is

used in [4] to construct the paths of the moving objects in a

non-overlapping multiple camera network. A multi-camera

calibration scheme that uses a coordinate measuring machine

(CMM) to generate target points for camera calibration and

integration is presented in [5]. The CMM identifies the target

location points that are then used for camera calibration.

In this paper, we propose an iterative statistical model to

recover the position of the cameras and the missing trajectory

information. The model estimates missing trajectories across

the unobservable regions and uses both parametric and non-

parametric algorithms. Kalman filtering estimates the target

trajectories in unobserved regions and linear regression esti-

mates the position of the target based upon the motion model

generated from the measured positions in the field of view of

each sensor. Once the missing trajectory information is esti-

mated, the relative angles between the sensors are calculated

based on the observed and estimated target positions.

The paper is organized as follows. In Section 2 we formu-

late the problem. Section 3 describes the proposed algorithm

for the estimation of the relative camera position. In Section

4 we discuss the experimental results on both synthetic and

real data. Finally, Section 5 presents the conclusions.

2. PROBLEM FORMULATION

Let the object observations (trajectories) be provided by a

network Ψ = {C1, C2, . . . , CN} of N cameras with non-

overlapping fields of view. Let a trajectory T be represented

as T = {(xi
j , y

i
j) : 0 < j < Mi; i = 1, . . . , N}, where
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Fig. 1. Schematic representation of a scene observed with
non-overlapping cameras. P i = (pi

x, pi
y, φi) represents the

unknown camera position and rotation to be estimated

(xi
j , y

i
j) is the estimated position of the target in the image

plane and Mi is the number of target observations from cam-

era Ci.

Let each cameras Ci provide a vertical top-down view of

the scene, as shown in Figure 2. We assume therefore that

the trajectories are preprocessed using a homography trans-

formation [6] or that the cameras are mounted so that their

optical axis is perpendicular to the ground plane. Under this

assumption, the number of parameters for the localization of

each camera Ci is reduced to three, namely the camera posi-

tion, P i = (pi
x, pi

y), and the rotation angle, φi, expressed as

the relative angle between the camera and the horizontal axis.

To summarize, the unknown parameters Θi for camera Ci are

Θi = [pi
x, pi

y, φi]. (1)

By fixing one camera as a reference, the objective is to esti-

mate the camera configuration

Θ = [Θ1, Θ2, Θ3, . . . ,ΘN−1], (2)

as discussed in the next section.

3. PROPOSED ALGORITHM

We use the target trajectories observed in each camera Ci

to estimate the unknown parameter Θi. To locate the un-

known camera configuration, the missing trajectory data are

estimated after Kalman filtering the observed data. Next for-

ward and backward linear regression are used in the unob-

served regions to propagate a motion model consistent with

the Kalman estimations.

Let us define the target state Xt at time t as

Xt = [x, ẋ, y, ẏ], (3)

where (x, y) is the target position and (ẋ, ẏ) is the target ve-

locity. The state Xt+1 at time t + 1 is defined as

Xt+1 = AXt + Vt (4)

where

A =

⎡
⎢⎢⎣

1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

⎤
⎥⎥⎦

The matrix A is the observation model which transforms the

target state at time t to the next state at time t+1. The matrix

used here ensures that the target follows a smooth path. Vt is

the process additive noise that models small variations in the

motion of the target and is assumed to be zero-mean Gaussian

noise with covariance Σv , defined as

Σv = diag[10−10, 10−6, 10−10, 10−6].

The observation model can be expressed as

Zi
t = Ri(LXt − P i) + Wt i = 1, . . . , N (5)

where Ri is the rotation matrix

R(θ) =
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
,

and

L =
[

1 0 0 0
0 0 1 0

]
.

Wt is the measurement Gaussian noise with variance Σw,

given by Σw = diag([10−1010−10]).
The missing trajectory points between two consecutive

sensors Ci and Ci+1 are computed in two steps, using for-

ward and backward estimation. Forward estimation computes

the missing trajectories from Ci to Ci+1. Backward estima-

tion computes the missing trajectories from Ci+1 to Ci. The

final missing trajectories between Ci+1 and Ci are estimated

by fusing the results of the two estimates.

Kalman filtering is applied to the Mi target observations

in each camera Ci. The prediction at t + 1 uses the estimate

from t to compute the current target state (Eq. 4). Similarly,

the error covariance matrix is estimated with Σv(t + 1) =
AΣv(t)AT . Next, measurement information from time t is

used to refine the predictions using the Kalman gain Kt =
Σv(t)/(Σv(t) + R). The estimates are then updated with the

measurement as

Xt+1 = Xt + Kt(Zt −Xt). (6)

The smaller the residual (Zt −Xt) the higher the agreement

between the estimation and the measurement. Finally the er-

ror covariance is updated as Σv(t) = (I −Kt)Σv(t).
Equations (4)-(6) are used iteratively for all the available

noisy measurements. Next, trajectory data in the unobserved

regions are derived using forward and backward estimation.
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For forward estimation, the filtered Ci data are represented

as a second order polynomial (y = a0t
2 + a1t + a2) for

both (horizontal and vertical) directions. To estimate the tar-

get trajectory in the unobserved regions, the coefficients ak

(k = 0, 1, 2) of the polynomial are computed using linear

regression. The noisy estimations are Kalman filtered to gen-

erate the final trajectory data from Ci to Ci+1 for the forward

estimation step.

To obtain a more robust estimation of the trajectory data

in the unobserved regions, the same process is applied back-

wards from Ci+1 to Ci. Finally, the forward and backward

estimation results are averaged to obtain the final missing

trajectory estimation. The same process is repeated for all

the adjacent sensor pairs to estimate the missing trajectories

throughout the network.

The relative angle between Ci and Ci+1 is computed by

calculating the angle between P , the observed target position

in sensor Ci+1, and P̂ , the estimated target position in the

same sensor estimated from the adjacent sensor Ci. This rel-

ative angle between consecutive cameras, φi,i+1, is computed

as

φi,i+1 = cos−1 P · P̂
|P ||P̂ | (7)

for the complete network. Finally, all cameras Ci are rear-

ranged with respect to the reference sensor C1 to obtain the

final configuration of the network. For a network of N cam-

eras, the algorithm estimates the configuration in 2N −2 iter-

ations. The results of the algorithm are discussed in the next

section.

4. EXPERIMENTAL RESULTS

In this section, the proposed algorithm for the estimation of

the relative camera position is demonstrated on synthetic data

and on real data. Synthetic target data are generated for a net-

work of N = 4 and for a network N = 8 cameras (Figure 2).

The estimated camera configuration is shown in brown, whereas

the exact sensor position is indicated in black to visualize the

localization error. Based on 10 datasets with Tp = 10000
trajectory points, for N = 4, the average estimated orienta-

tion error per camera is εo = 1◦ and the average estimated

position error is εp = 0.04 units (Table 1). The algorithm

converged in 6 iterations. For N = 8, the average estimated

orientation error for each camera is εo = 0.5◦ and the average

position estimation error is εp = 0.03 units. The algorithm

converged in 14 iterations. In a similar configuration, the sys-

tem proposed in [1] converges to the solution in 65 iterations.

To analyze the expected estimation error depending on the

available trajectory data, Figure 3 shows the performance of

the proposed algorithm as a function of the number of obser-

vations for a network with N = 8 sensors. In this case the

total trajectory points Tp = 10000 and the observed trajec-
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Fig. 2. Networks of (a) N = 4 and (b) N = 8 non-
overlapping sensors, with Tp = 10000 synthetic trajectory
data points. The fields of view of the cameras are shown
as squares. The estimated sensor configuration (brown) is
shown on top of the ground-truth configuration (black)

N=4 N=8
εo εp εo εp

0.94 0.04 C1 0.49 0.045

1.00 0.02 C2 1.00 0.003

1.40 0.06 C3 1.00 0.040

0.10 0.01 C4 1.40 0.002

- - C5 0.06 0.010

- - C6 0.06 0.050

- - C7 0.04 0.100

- - C8 0.07 0.005

Table 1. Average orientation error (εo) and average position
error (εp) over 10 datasets for a network of N = 4 and N = 8
cameras, with Tp = 10000

tory points are To = {563, 1126, 2252, 4504}. It is possible

to notice that when the observed points are increased from
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Fig. 3. Estimation error as a function of the number of obser-
vations for a network of N = 8 sensors, with Tp = 10000 and
a varying number of observed trajectory points. Key: Experi-
ment 1: To = 563; Experiment 2: To = 1126; Experiment 3:
To = 2252; Experiment 4: To = 4504

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

xy

1

xy

2

xy

3

Fig. 4. Network of N = 3 cameras with real trajectory data.
The estimated sensor configuration (brown) is shown on top
of the ground-truth configuration (black). The estimated con-
figuration on the top of ground truth to visualize the estima-
tion error (black areas)

To = 563 to To = 4504 the average orientation error is re-

duced from εo = 17.05◦ to εo = 0.73◦. Similarly, the posi-

tion error is reduced from εp = 15 to εp = 0.5 units.

To test the algorithm with real data, we used a network

of N = 3 cameras, without changing the parameters used for

the synthetic data experiments. The distance d between the

cameras was d(C1, C2) = 110 cm, d(C1, C3) = 127 cm,

and d(C2, C3) = 116 cm. The observed track data To were

generated from a ball moving across the cameras. Figure 4

shows the estimated network configuration (brown) on top of

the hand-made ground-truth camera position (black). The av-

erage orientation error is εo = 1◦ and the average position

error is εp = 2.5 cm. Raw data and additional results are

available at the following URL:

http://www.elec.qmul.ac.uk/staffinfo/andrea/multi-sensor.html

5. CONCLUSIONS

We proposed an algorithm for the recovery of the missing tra-

jectory points to estimate the relative position between cam-

eras with non-overlapping fields of view. We used Kalman fil-

tering and linear regression to model the trajectories in unob-

served regions. Forward and backward estimations are used

to increase the reliability of the results. The performance of

the algorithm was demonstrated on a set of real and synthetic

data in networks of N = 3, N = 4 and N = 8 cameras. The

results showed that for a network of N = 4 non-overlapping

sensors the average location estimation error is approximately

1% of the size of the scene and this error is further reduced to

0.75% for a N = 8 sensors network.

Future work includes the use of the homography transfor-

mation [6] on the trajectory data to relax the assumption on

the sensor positioning (vertical top-down view of the scene)

and the testing of the algorithm using trajectory data gener-

ated with audio-visual sensors.

6. ACKNOWLEDGEMENTS

We would like to thank Ali Rahimi for providing us with the

visualization and the synthetic data generation software.

7. REFERENCES

[1] A. Rahimi, B. Dunagan, and T. Darrell, “Simultaneous calibra-
tion and tracking with a network of non-overlapping sensors,”
in Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition, June 2004.

[2] O. Javed, Z. Rasheed, K. Shafique, and M. Shah, “Tracking
across multiple cameras with disjoint views,” in Int. Conf. on
Computer Vision, Nice, France, 2003.

[3] C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, and A. Grue, “Si-
multaneous localization, calibration, and tracking in an ad hoc
sensor network,” in Proceedings of the fifth Int. Conf. on In-
formation processing in sensor networks, New York, NY, USA,
2006, pp. 27–33.

[4] V. Kettnaker and R. Zabih, “Bayesian multi-camera surveil-
lance,” in Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition, June 1999, vol. 2, pp. –259.

[5] T. S. Shen, J. Huang, and C. H. Menq, “Multiple-sensor inte-
gration for rapid and high-precision coordinate metrology,” in
IEEE/ASME Transactions on Mechatronics, June 2000, vol. 5,
pp. 110–121.

[6] K. Kanatani, N. Ohta, and Y. Kanazawa, “Optimal homography
computation with a reliability measure,” in IEICE Transactions
on Information and Systems, June 2000, pp. 1369–1374.

II ­ 284


