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ABSTRACT

The goal of secure computation is for distrusted parties on a network
to collaborate with each other without disclosing private informa-
tion. In this paper, we focus on secure thresholding, or comparing
two secret numbers, which is a key step in pattern recognition. Exist-
ing cryptographic protocols are too complex to be used in real-time
signal processing. We propose a new security model based on nonin-
vertible functions called Quasi-Information-Theoretic Security. Us-
ing this model, we develop a novel secure thresholding protocol that
is both secure and computationally ef cient. The proposed protocol
hides information in a carefully-designed random polynomial and in
a lower-rank subspace based on Chebyshev’s polynomials.

Index Terms— Communication system security, Secure Multi-
party Computation, Cryptography, Distributed Algorithms,

1. INTRODUCTION

The proliferation of signal capture devices, portable storage and wire-
less networks make sharing of digital data easier than ever. Such ca-
sual exchange of data, however, has increasingly raised questions on
how sensitive information can be protected. Consider the scenario
in which a user of a cellular-phone camera wants to send his/her pic-
tures to an online photo-processing laboratory for image enhance-
ment such as red-eye removal. The user would be concerned about
the privacy of his/her pictures while the online store would need to
protect the proprietary enhancement technologies against reverse-
engineering. Consider another scenario that a law enforcement agency
wants to search for possible suspects in a surveillance video owned
by private company A, using a proprietary software from yet another
private company B. The three parties involved (agency, company A,
company B) all have information they do not want to share with
each other (criminal biometric database from the agency, surveil-
lance tape from company A and proprietary software from company
B). To prevent these problems, we need to establish a joint compu-
tation and communication platform that can guarantee the secrecy
of private data and algorithms, and at the same time achieve a well-
de ned objective that bene ts all parties involved.

Such type of secure computation in a distributed environment is
a well-known problem in cryptography, and is referred to as the Se-
cure Multiparty Computation (SMC) problem. The goal of a SMC
protocol is to allow multiple distrusted parties jointly compute a
function without complete sharing of their own information [1]. Like
many other cryptographic protocols, the security of SMC protocols
can be guaranteed under two different security models — information-
theoretical security and computational security. Information-theoretically
secure protocols protects privacy in such a way that the information

exchanged in the protocol provides no additional information, mea-
sured in entropy, about the private data. In computationally secure
protocols, private information is rst transformed before transmit-
ting to other parties. The security is based on the huge computa-
tional burden of performing the inverse transformation. Although
the information-theoretic security model provides the ideal level of
security, it has been shown that many simple operations like inner
product or thresholding cannot be securely computed between two
distrusted parties [2]. As a result, most existing SMC protocols are
built under the computational security model [1, 3, 4].

The main drawback of computationally-secure protocols is their
high computational complexity. For example, the classical solution
to the thresholding problem1, or comparing two private numbers a
and b, is to use Oblivious Transfer (OT) [4] – one party (Bob) creates
a series of tables by bitwise comparing bwith every possible value of
a, encrypts the tables using a public-key cipher, and transfers them to
Alice. Alice decrypts the entries in the tables that correspond to his
own number a and deduces the result. Most public-key ciphers use
modular exponentiations on very large nite eld which is complex
to compute. As a result, it is dif cult to scale these protocols to
signal processing applications that requires handling a large amount
of data and satisfying the real-time constraint.

In this paper, we propose a new security model, called QUasi-
Information-Theoretic (QUIT) security model to enable much more
ef cient SMC protocols to be developed. The QUIT model is a
weaker form of information-theoretic security. Its security is pro-
vided by using non-invertible transformations on private data. Though
not explicitly de ned, various form of QUIT-secure protocols have
already been developed for inner product computation [5] and linear
ltering [6]. In this paper, we formally de ne the QUIT model and

develop a QUIT-secure protocol for the thresholding problem which
is a key step in building secure pattern recognition applications. We
will show that, compared with existing protocols, our proposed pro-
tocol is more secure to one party (Alice) but not as secure to the
other (Bob) – Alice can deduce Bob’s number to be among N dis-
tinct numbers spread through the entire range of the input. N is a
design parameter that can be changed based on the target level of
security. Experimental results show that our protocol executes sig-
ni cantly faster than existing protocols.

The rest of the paper is organized as follows. In Section 2,
we brie y review the existing secure models and introduce our new
QUIT security model. A novel QUIT-secure threshold protocol is
presented in Section 3. We prove the security of the new protocol
in Section 4 and compare its performance with existing scheme in
Section 5. We conclude the paper in Section 6.

1This problem is commonly referred to as the Secure Millionaire Problem
in SMC literature.
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2. SECURITY MODELS

Following the convention used in cryptography, we refer the private
information as plaintext and the information exchanged among dis-
trusted parties as ciphertext. All existing cryptographic protocols are
based on one of the two security models — information-theoretical
security and computational security. Information-theoretical secu-
rity means the a posteriori probability of the plaintext being x, given
that the observed ciphertext y, is identical to the a priori probability
of the plaintext being x, i.e. knowing y gives no information about
x. On the other hand, computational security means given the ci-
phertext y, no polynomial-time algorithm can compute the correct
plaintext x with a non-trivial probability.

2.1. Quasi-Information-Theoretic Security

The quasi-information-theoretic security is based on non-invertible
mappings. Let us rst de ne non-invertibility.

DEFINITION 1 Let g : X → Y be a mapping from a probability
space2 X to another probability space Y . ∀ x ∈ X with P (x) > 0,
de ne g−1 ◦ g(x) = { α | α ∈ X , g(α) = g(x) and P (α) > 0}.

1. Given α, β ∈ X with non-trivial probability, they are called
QUIT-indistinguishable if g(α) = g(β).

2. Given x ∈ X with P (x) > 0, g−1 ◦ g(x) is called the QUIT
indistinguishable set of x under g.

3. g(x) is called noninvertible if the probability of nding a x ∈
X whose QUIT indistinguishable set has no element besides

x is zero, i.e. P
�
{ α | α ∈ X , |g−1 ◦ g(α)| < 2}

�
= 0. In

particular, we call g(x) N-noninvertible if the probability of
nding a QUIT indistiinguisable set smaller than N is zero.

Notice that given α ∈ g−1 ◦ g(x), there is no relative increase in the
knowledge about α and x based on y = g(x). This can be easily
shown by using the Bayes rule:

P (x|g(x) = y)

P (α|g(α) = y)
=

P (g(x) = y|x)P (x)/P (y)

P (g(α) = y|α)P (α)/P (y)
=

P (x)

P (α)
(1)

Any cryptographic protocol A can be viewed as a mapping from the
plaintext P to the ciphertext C. As such, we introduce the following
de nitions:

DEFINITION 2 A cryptographic protocol A is called QUIT-secure
if the underlying mapping A from plaintext to ciphertext is nonin-
vertible. A is N-QUIT secure if the mapping is N-noninvertible.

It is obvious that the QUIT security model is weaker than the
information-theoretic security as g can be any noninvertible mapping
which can certainly provide additional information about the plain-
text x ∈ P given the ciphertext y = g(x) ∈ C, i.e. P (x|y) > P (x).
On the other hand, based on equation (1), the QUIT model guar-
antees that the relative relationship between two plaintexts x and α
that map to the same ciphertext y remains unchanged, though the
individual conditional probability may increase.

QUIT is also different from computational security. The com-
putational security model depends solely on the computational hard-
ness of computing the plaintext x given the ciphertext g(x) = y.
However, for a given y, it is guaranteed that there is only one x that

2We assume the probability space discrete. If it is continuous, thenX and
Y will be the collection of measurable sets.

satis es g(x) = y. In QUIT security, computing the QUIT indis-
tinguishable set g−1 ◦ g(x) of x for a given mapping is often quite
straightforward. However g−1 ◦ g(x) can be large and the true iden-
tify of x will remain hidden. It can also be seen from Equation (1)
that, if P (α) = P (x), then P (α|g(x|α)) = P (x|g(x)), i.e. if the
plaintext is uniformly distributed, the a posteriori probability is also
uniform within the QUIT indistinguishable set of x. In this special
case, there is no algorithm that can distinguish between α and x.

3. PROPOSED PROTOCOL

Assume we have two distrusted parties: Alice and Bob. Alice holds
a secret scaler a, and Bob holds another secret scaler b. They want
to nd out who has a bigger number without disclosing their private
data. Under our new notion of security, we propose to convert this
problem into a special polynomial evaluation problem. Let n be an
even number. Alice rst randomly generates a (n−1)th-degree poly-
nomial f(x) that has only one real root: Alices secret number a. In
addition, we require that the derivative of f(x) at a is non-negative.
Alice can easily generate this polynomial by rst randomly selecting
(n − 2)/2 complex conjugate numbers as the roots of the polyno-
mial, and then multiplying the resulting polynomial by a negative
random number if the derivative of f at a is negative or a positive
random number otherwise. We will re ne this procedure for better
security in Section 4. The key property of f(x) is that for any b > a,
we have f(b) > 0 and for all b < a, we have f(b) < 0. An ex-
ample of such a f(x) is shown in Figure 1(a). Thus if Bob knows
only the value of f(b) without knowing the actual polynomial, he
can easily solve the problem without any knowledge of a. Given
f(x) = an−1xn−1 + · · · + a1x + a0, we can evaluate f(b) as an
inner product between two vectors x1 and x2:

f(b) � an−1b
n−1 + · · ·+ a1b + a0 � xT1 x2 (2)

where Alice has x1 = [ an−1 · · · a1 a0 ]T and Bob has x2 =
[ bn−1 · · · b 1 ]T .
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Fig. 1. (a) Random polynomial with a single real root at a = 1. (b)
Chebyshev’s polynomials of degree one (blue solid), degree two (red
dash), degree three (green dast-dot) and degree four (black dot).

Thus, the evaluation of a polynomial becomes that of an inner
product. Our secure inner product evaluation is based on [5]. The
idea is to linearly map x1 and x2 into a lower-dimensional space
such that given the transformed results, it is impossible to exactly
recover a and b. We use an invertible matrix M ∈ Rn×n, and ver-
tically divide it into two parts Ml ∈ Rn×k and Mr ∈ Rn×(n−k).
On the other hand, we horizontally divide M−1 into two parts Mt ∈
Rk×n and Mb ∈ R(n−k)×n. The design of M and its submatrices
is critical to the security of the protocol and the details will be dis-
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cussed in Section 4. Given M and the submatrices, our protocol of
secure thresholding is described in Algorithm 1 and 2.

Algorithm 1 ThresholdingAlice(x1,M)

Require: x1 = [ an−1 · · · a1 a0 ]T ∈ R
n. M = (Ml Mr)

is a n × n invertible matrix where n ≥ 2; Ml ∈ R
n×k and

Mr ∈ Rn×(n−k).
1: x11 ← xT1 Ml

2: x12 ← xT1 Mr

3: Transmit x12 to Bob.
4: Receive x21 from Bob.
5: Send xT11x21 to Bob.

Algorithm 2 ThresholdingBob(x2,M
−1)

Require: c = [ bn−1 · · · b 1 ]T ∈ R
n. M−1 =

� Mt

Mb

�
is a

n × n invertible matrix where n ≥ 2; Mt ∈ Rk×n and Mb ∈
R
(n−k)×n.

1: x21 ←Mtx2
2: x22 ←Mbx2
3: Transmit x21 to Alice.
4: Receive x12 from Alice.
5: Receive xT11x21 from Alice.
6: Compute f(b) = xT12x22 + xT11x21
7: Return f(b) > 0.

The correctness of this protocol can be easily veri ed.

f(b) = xT1 x2

= xT1 MM−1x2

= xT1

�
Ml Mr

��
Mt

Mb

�
x2

= xT11x21 + xT12x22

4. SECURITY ANALYSIS OF THE PROTOCOL

In this section, we show that our proposed thresholding protocol is
QUIT secure. First, let us consider the information Bob sent to Al-
ice. Bob sends Alice x21 = Mtx2. Since Mt is a k × n matrix
and x2 = [ bn−1 · · · b 1 ]T , Mtx2 is equivalent to evaluating k
different polynomials at b, whose coef cients are de ned by the row
vectors of Mt. The cryptosystem induced by Mt is m-QUIT secure
if and only if there are at leastm distinct values in the QUIT indistin-
guishable set of b. This is equivalent to saying that the (n− 1)th de-
gree polynomials with coef cients [Mt(i, 1)Mt(i, 2) . . . Mt(i, n−
1) Mt(i, n) − x(i)] for i = 1, 2, . . . , k share m distinct roots. To
maximize the security, we would to have m as large as n− 1 which
is the degree of the polynomials. As shown below, this constraint
impose a maximum value on k, the number of rows in Mt, one can
use. To show this, let us start from the following lemma:

LEMMA 1 Given two polynomials g(x) and h(x) of degree n − 1
and a scalar b. If equations g(x) = g(b) and h(x) = h(b) share
exactly the same roots, then g(x) = k1h(x)+k2, where k1 �= 0 and
k2 are constants.

Proof Since g(x) = g(a) and h(x) = h(a) share the same set
of roots, we have [g(x) − g(a)] = k1[h(x) − h(a)] or g(x) =

k1h(x)+[g(a)−k1h(a)] for some k1 �= 0. Set k2 = g(a)−k1h(a)
and results follow. Notice that as long as g(x) is not a constant,
the coef cient vector of f(x) is linear independent of the coef cient
vector of g(x). Q.E.D.

THEOREM 1 If the proposed thresholding protocol is (n − 1)-
QUIT secure with respect to Bob, then the number of rows k in Mt

is at most two.

Proof Since the full matrix M−1 invertible, the k row vectors
of Mt must be linearly independent. k is at least two based on
LEMMA 1. If k is larger than two, select any three row vectors
and formulate the three corresponding polynomials f1(x), f2(x)
and f3(x). Using LEMMA 1, we have f1(x) = k0f3(x) + k1
and f2(x) = k3f3(x) + k4. Thus, the coef cient vectors of both
f1(x) and f2(x) lie in the subspace spanned by the coef cient vec-
tor of f3(x) and [ 0 · · · 0 1 ]T and we obtain a contradiction. Q.E.D.

Next, we come to the actual design of Mt. Even though Alice
may not know the precise value of b, she can usually assume b to be
within a certain range. Without loss of generality, assume that b ∈
[−1, 1]. Thus, we need to nd a polynomial g(x) such that for any
b ∈ [−1, 1], all the n−1 roots of g(x) = g(b) are real and fall within
the range [−1, 1]. An example of such function is the (n − 1)th

order Chebyshev’s polynomial3: Tn−1(x) = cos[(n−1) cos−1(x)].
Figure 1(b) shows the rst four Chebyshev’s polynomials. We state
the following fact without proof about the Chebyshev’s polynomials
though it is quite obvious based on the gure.

FACT 1 Except for at most n + 1 distinct points within [−1, 1],
the nth order Chebyshev’s polynomial Tn(x) is n-noninvertible on
[−1, 1]

The n+ 1 distinct points forms a measure-zero set in [−1, 1]. Thus,
the mappingMtx2 will be (n−1)-QUIT secure to Bob if we can set

Mt =

�
C[Tn−1(x)]

C[k0Tn−1(x) + k1]

�
where the operator C[·] denotes

the coef cient vector of a polynomial. Given Mt, we can easily
compute Mb by extending the two row vectors in Mt to a full set of
basis in Rn.

We now show that the proposed thresholding protocol is also
QUIT-secure to Alice. Bob receives x12 = xT1 Mr from Alice. Bob
also knows that x1 corresponds to the coef cient vector of a (n −
1)th degree polynomial f(x) with a single real root and non-negative
derivative at that root. To show that the protocol is QUIT-secure to
Alice, we need to nd x′1 that corresponds to a polynomial with the
same features and x12 = x′T1 Mr . Given Mt is de ned based on the
Chebyshev’s polynomials, we have the following theorem:

THEOREM 2 Given that x1 is the coef cient vector of a polyno-
mial f(x) with only a single real root and non-negative derivative

at that root and Ml =

�
tT1
tT2

�
, there exists x′1 �= x1 such that

x′T1 Mr = xT1 Mr and x′1 corresponds to the coef cients of f ′(x)
which also has a single real root with non-negative derivative at that
root.

Proof Recall that M−1 =

�
Mt

Mb

�
and M = (Ml Mr). Thus,

Mt and Mr relate to each other by the following relationship:

Mt ·Mr = 0

3Though stated in its general form, Chebyshev’s polynomials can be
easily computed as a true polynomial based on the recurrence relation
Tn+1(x) = 2xTn(x)− Tn−1(x) with T−1(x) = 0 and T0(x) = 1.
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As Mr and Mt are a part of an invertible matrix, the rank of Mt

is 2 and the rank of Mr is n − 2. Thus, if vTMr = 0, vT must
be in the subspace S spanned by the row vectors of Mt. Note that
(x1 + v)TMr = xT1 Mr . Our strategy is to nd an appropriate v
that can satisfy the conditions.

On the other hand, the row vectors of Mt denote the coef cients
of the Chebyshev’s polynomial Tn−1(x) and k0Tn−1(x) + k1 for
arbitrary k0 and k1 �= 0. It is obvious that the vector [ 0 · · · 0 1 ]T

is in the subspace S. De ne v = [ 0 · · · 0 ε/2 ]T where −ε is the
largest local maximum in (−∞, a] of Alice polynomial f(x). If no
such local maximum exists, ε can be chosen arbitrarily. The vector
x′1 = x+ v then corresponds to a polynomial f ′(x) = f(x) + ε/2.
Note that this polynomial still has a single real root because the large
local maximum on the left hand side of the root is still ε/2 from
zero. Furthermore, the derivative at the root must be non-negative
otherwise a local maxima would have crossed the x-axis. Q.E.D.

In the unfortunate case when the largest local maximum left of
a and the smallest local minimum right of a are both small, we can
only shift f(x) by a small amount before it starts to have more than
one real root. In other words, it is possible for Bob to roughly es-
timate a despite the fact that the protocol is QUIT-secure. The se-
curity, however, can be signi cantly improved by imposing some
constraints on the random complex roots of f(x). Without loss of
generality, we again assume that Alice’s number a ∈ [−1, 1]. We
have the following result:

THEOREM 3 The thresholding protocol is INFORMATION THE-
ORETICALLY secure to Alice if Alice rst generates an auxiliary
polynomial

g(x) = (x− 1)

(n−2)/2�

i=1

(x− ci)(x− c̄i) (3)

with random ci under the constraint Real(ci) > 1 for all i and then
let f(x) = g(x)− g(a).

Proof For any real x, if we rewrite each term in Equation (3) in
polar form, the complex exponential terms for the conjugate roots
will cancel each other and g(x) will become

g(x) = sign(x− 1) · |x− 1| ·
(n−2)/2�

i=1

|x− ci| · |x− c̄i| (4)

Equation (4) shows that a) g(x) is negative for x < 1 and positive for
x > 1 and b) g(x) is strictly increasing or dg

dx
> 0 for x ≤ 1. This

is because as the real parts of all the complex roots are larger than
one, every modulus term in Equation (4) decreases as x approaches
1 from −∞. As sign(x − 1) is negative, g(x) is strictly increas-
ing. Clearly f(x) = g(x) − g(a) for a ∈ [−1, 1] satis es our
requirements of having a single real root and non-negative deriva-
tive at a. Recall that the coef cient vector of f ′(x) = f(x) + c
for any constant c is in the null space of Mr . By choosing c ∈
[g(a), g(a) − g(−1)], f ′(x) can have its single real root anywhere
in [−1, 1]. Thus, based on the information sent by Alice, Bob has
no information about a and the protocol is information theoretically
secure to Alice. Q.E.D.

In closing, we have developed a thresholding protocol that achieves
perfect security for Alice but leaks some information about Bob’s
secret number. Compared with existing computationally secure pro-
tocols, our protocol is more secure to one party but less secure to the
other one.

5. EXPERIMENTAL RESULTS

To compare the computational performance of the proposed protocol
with existing schemes, we use the cryptographic secure millionaire
protocol described in [4]. We have implemented both protocols in
Matlab 7.0.1 on a Pentium 4 Dual Core 3.4GHz machine with 1GB
memory. To ensure the validity of the protocols, the protocols for
Bob and Alice are run separately in two processes and the two pro-
tocols exchange information using TCP/IP.

For the cryptographic protocol, Bob creates a series of tables
by bitwise comparing his secret number b with every possible value
of Alice’s secret number a, encrypts the tables using a public-key
cipher, and then transfers them to Alice. Alice decrypts the only
entry of the table that is corresponding to his own number a and
extracts the results. We have implemented our own 512-bit RSA
public-key cipher using the long-integer operations provided by the
Maple kernel within Matlab. We have run a series of comparison
between random pairs of 64-bit oating point numbers. The average
computation time per pair on Bob’s side is 84.70 seconds. Excluding
the time spent on network operations, this number reduces to 83.73
seconds. The computation times per pair for Alice are 10.72 seconds
with networking and 10.43 without. Alice is faster because she does
not need to generate large tables. We have pre-generated a set of
random public keys used in the protocol and have excluded the time
for key generation in the measurement.

On the other hand, our proposed technique runs signi cantly
faster. On average, Alice takes 35.40 milliseconds with network and
1.31 milliseconds without for each comparison. Bob takes 35.41
milliseconds with network and 0.23 milliseconds without. Alice
takes longer as she needs to generate a 19th order random polyno-
mial. Compared with the cryptographic protocols, this is a factor of
104 improvement in computation time.

6. CONCLUSION

In this paper, we propose a novel security model called Quasi In-
formation Theoretical model which enables us to design a secure
thresholding protocol that is signi cantly faster than its cryptographic
counterpart. Currently, we are re ning the implementation of our
cryptographic protocols based on commercial optimized public-key
ciphers in order to produce more realistic comparisons.
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