
PROGRESSIVE REVERSIBLE DATA HIDING BY SYMMETRICAL HISTOGRAM
EXPANSION WITH PIECEWISE-LINEAR HAAR TRANSFORM *

Lei Yanga Pengwei Haoa,b Chao Zhanga

a Center for Infomation Science, Peking University, Beijing 100871, China
b Department of Computer Science, Queen Mary University of London, London E1 4NS, UK

E-mail: {yanglei, phao, chzhang}@cis.pku.edu.cn, phao@dcs.qmul.ac.uk

ABSTRACT

In this paper, we present a progressive reversible data
hiding technique by symmetrical histogram expansion in the
transform domain of Piecewise-Linear Haar (PLHaar). Data
are embedded into the PLHaar coefficients of images
progressively from the pivotal bin of a histogram of PLHaar
coefficients to both sides of the pivot symmetrically. With
PLHaar, no overflow or underflow occurs to the pixel
values, and our data hiding method achieves the highest
embedding capacity with PSNR around 50dB compared to
the previous methods in the literature. The method can also
be applied to artificial images with an exactly flat histogram,
which is impossible for a method to hide data in the spatial
domain. The progressiveness of the proposed method also
enables a rough but automatic capacity-PSNR control. The
effectiveness of our method is demonstrated with a number
of experiments.

Index Terms— Reversible data hiding, symmetrical
histogram expansion, PLHaar, capacity-PSNR control,
progressive data hiding

1. INTRODUCTION

Reversible data hiding [1-10], often referred to as reversible
watermarking, was proposed as a promising technique for
sensitive image (such as medical and remote sensed images)
authentication, and it has drawn much attention in the recent
years. Such an embedding algorithm allows extraction of
intact hidden data from the watermarked digital carriers and
lossless recovery of the original images, if no modification
has been made to the watermarked digital carriers.
 The earliest reference of reversible data hiding
appeared as an authentication method in a patent proposed
by Honsinger et al [1], which utilizes modulo arithmetic but
suffers from salt-and-pepper visual artifact. Afterwards, a
number of reversible data hiding techniques have been
developed, and the methods can be classified into two main
categories by different data embedding domains. One
category applies data embedding in the spatial domain [1-4],
with relatively low capacity. The other category hides data

into the coefficients in the transform domains [5-9], such as
the integer DCT and the integer wavelet transform domains.
The second category of methods are all facing the same
problem: how to choose appropriate embedding locations to
avoid pixel value overflow and underflow, and all the
solutions have to pay the overhead cost to record all the
embedding locations, which greatly reduces the embedding
capacity.

In this paper, we try data hiding in the transform
domain of the Piecewise-Linear Haar transform (PLHaar)
[11]. PLHaar is an integer Haar-like transform, and was
originally developed by J. Senecal for lossy and lossless
image compression. It maps an n-bit integer to another n-bit
integer, which results in no dynamic range expansion. For a
2D point of a pair of pixel values in the range of

]255,0[]255,0[, PLHaar transforms the point into a new
point in the same range of [and just with

 rotation in the sense of the L
]255,0[]255,0

o45 norm instead of the L2

norm. Thus, all the PLHaar coefficients of images with
pixel values in [0,255] are still in [0,255]. PLHaar
guarantees no overflow or underflow of pixel values, so
every coefficient in the PLHaar domain is available for
embedding data, as long as the coefficients remain in the
same range after embedding.

We embed watermark bits into the coefficients in the
PLHaar domain, i.e., we only modify bits of the coefficients,
so watermarked coefficients are still in the same range as
the original, [0,255]. Then with the inverse PLHaar
transform, the watermarked images we obtain are surely
without pixel value overflow or underflow. Consequently,
there is no need to carefully select proper embedding
locations for hiding data. Without such a process, the
PLHaar allows higher hiding capacity and simpler hiding
algorithm. At the same time, all the data in our algorithm
with PLHaar can be represented with 8-bit numbers, which
makes cheap and fast hardware implementation possible for
8-bit fixed-point arithmetic.

Histograms in the PLHaar domain have the good
properties of decorrelated coefficients and peaked
distribution. So the artificial images with exactly flat
histograms, which have zero embedding capacity in the
spatial domain, can be embedded into a lot of bits with our
algorithm. In Section 2, we propose a symmetrical * This work was supported by NKBRPC of China (2004CB318005).

II 2651424407281/07/$20.00 ©2007 IEEE ICASSP 2007

Embed into bin 8

Shift bin 7 right
and Embed into 6

Shift bin 4 left
embed into 5 mbed into 5

and

histogram expansion algorithm in the PLHaar transform
domain, which outperforms the histogram expansion
methods in the spatial domain, with high embedding
capacity and progressiveness. We choose a pivotal bin as
the symmetrical axis in a histogram, and shift the other
histogram bins to both sides in order to evacuate some bins
for data embedding. Then, we insert bins of pixel values to
both the left and the right sides of the pivot in the histogram,
progressively according to the length of the hidden data.
The only overhead of our algorithm is the location of the
pivotal bin and the length of the watermark bits, which is
hidden in the least significant bits (LSB) of the coefficients
in the first row. Progressiveness of our algorithm enables a
rough but automatic control of capacity-PSNR. By pushing
pixel value bins in histograms further to both sides for more
number of empty bins around the candidate pixel value bins
for embedding, we can embed the watermark bits into not
only the least significant bits, but also the other less
significant bits.

histogram expansion algorithm in the PLHaar transform
domain, which outperforms the histogram expansion
methods in the spatial domain, with high embedding
capacity and progressiveness. We choose a pivotal bin as
the symmetrical axis in a histogram, and shift the other
histogram bins to both sides in order to evacuate some bins
for data embedding. Then, we insert bins of pixel values to
both the left and the right sides of the pivot in the histogram,
progressively according to the length of the hidden data.
The only overhead of our algorithm is the location of the
pivotal bin and the length of the watermark bits, which is
hidden in the least significant bits (LSB) of the coefficients
in the first row. Progressiveness of our algorithm enables a
rough but automatic control of capacity-PSNR. By pushing
pixel value bins in histograms further to both sides for more
number of empty bins around the candidate pixel value bins
for embedding, we can embed the watermark bits into not
only the least significant bits, but also the other less
significant bits.

We will summarize our data embedding and extraction
algorithms in Section 3. Experimental results on seven

 gray-scale images are presented in Section 4,
and conclusions are drawn in Section 5.

We will summarize our data embedding and extraction
algorithms in Section 3. Experimental results on seven

 gray-scale images are presented in Section 4,
and conclusions are drawn in Section 5.

8512512

2. SYMMETRICAL HISTOGRAM EXPANSION 2. SYMMETRICAL HISTOGRAM EXPANSION

To make our description clearer, we introduce a concept of
n-Buddy for m-bit numbers, with which n bits of a
coefficient can be changed in reversible histogram
modification.

To make our description clearer, we introduce a concept of
n-Buddy for m-bit numbers, with which n bits of a
coefficient can be changed in reversible histogram
modification.
Definition 1: n-BuddyDefinition 1: n-Buddy
An n-Buddy of an m-bit number is an m-bit number, whose
upper bits are the same, but the lower n bits have at
least one bit different.

An n-Buddy of an m-bit number is an m-bit number, whose
upper bits are the same, but the lower n bits have at
least one bit different.

nm

Take 8-bit numbers as examples: 2 and 3 are 1-buddies
of each other, and 4, 6, 7 are all 2-buddies of 5 under
Definition 1. It is obvious that if a number is modified in the
lower n bits, it must be one of its n-buddies or itself.
Therefore, after the lower n bits of the coefficients in a
histogram bin are modified, the pixel value in the bin
expands into the empty neighbor n-buddy bins. In the
recovery process, these neighbor n-buddy bins are all
mapped into the original single bin. Our lower n-bit
modification scheme is illustrated in Fig. 1.

Take 8-bit numbers as examples: 2 and 3 are 1-buddies
of each other, and 4, 6, 7 are all 2-buddies of 5 under
Definition 1. It is obvious that if a number is modified in the
lower n bits, it must be one of its n-buddies or itself.
Therefore, after the lower n bits of the coefficients in a
histogram bin are modified, the pixel value in the bin
expands into the empty neighbor n-buddy bins. In the
recovery process, these neighbor n-buddy bins are all
mapped into the original single bin. Our lower n-bit
modification scheme is illustrated in Fig. 1.

In Fig. 1, the LSB of pixel value 0 and 2, the LSB and
the second LSB of 5 are modified for data hiding, and then
the left histogram is transformed into the right. After
modification (data hiding), as in the right histogram of Fig.

1, pixel values 0 and 1 as actually come from pixel value 0,
pixel values 2 and 3 are from 2, and pixel values 4, 5, 6 and
7 are from 5. That means if we want to embed data into the
lower n bits of a bin number in a histogram, we need shift
its n-buddy bins aside to make room for the reversible
histogram modification. If there are k coefficients, we can
embed kn bits into the coefficients by modifying the lower n
bits. The embedding process can be formulated as:

In Fig. 1, the LSB of pixel value 0 and 2, the LSB and
the second LSB of 5 are modified for data hiding, and then
the left histogram is transformed into the right. After
modification (data hiding), as in the right histogram of Fig.

1, pixel values 0 and 1 as actually come from pixel value 0,
pixel values 2 and 3 are from 2, and pixel values 4, 5, 6 and
7 are from 5. That means if we want to embed data into the
lower n bits of a bin number in a histogram, we need shift
its n-buddy bins aside to make room for the reversible
histogram modification. If there are k coefficients, we can
embed kn bits into the coefficients by modifying the lower n
bits. The embedding process can be formulated as:

8512512

nm

WCC nn
w 22/ (1)

Fig. 2 illustrates our symmetrical histogram expansion
scheme. Firstly, we choose bin 6 as the pivotal bin for the
first embedding and shift bin 7 to the right as bin 8 to
evacuate bin 7 for the embedding. Then we shift bin 4 to the
left to embed data into bin 5. Finally, we embed data into
bin 8. That is for watermark embedding in a zigzag
scanning order. For hidden data extraction, we convert pixel
values 6 and 7 into 6, 5 and 4 into 5, 3 into 4, 8 and 9 into 7
so as to recover the original coefficient values in the same
order as in embedding.

 Fig.2 Symmetrical histogram expansion for data embedding

Some advantages of our symmetrical histogram expansion
scheme can be summarized as follows.
(1) Due to symmetrical histogram expansion, the

histograms are equalized, resulting in enhanced images
with better visual quality (see Fig.3).

(2) The algorithm is simple, and only the location of the
pivotal bin and the length of the hidden data need be
recorded for lossless extraction.

(3) Histogram shifts from the pivotal bin to both sides for
data hiding, so the data hiding process is progressive
and there is no need to evacuate all the embedding bins
beforehand.

(4) Progressiveness allows a rough automatic control of
capacity-PSNR, since fewer watermark bits need less
histogram shifting.

Fig.3 The original image (Left) and the watermarked image with
16298 byte hidden data and 34.04dB PSNR (Right)

Fig.1. Histogram modification for embedding data

II 266

3. DATA HIDING AND EXTRACTION

Based on the PLHaar transform and the symmetrical
histogram expansion, our progressive algorithm is
summarized as follows.
Data embedding:
1. Transform the original image using PLHaar.
2. Attach the lower bits of the coefficients in the first row

to the watermark bits.
3. Choose a middle bin in the PLHaar coefficient

histogram as the pivot, and record the location and the
length of the data to hide into some lower bits of the
coefficients in the first row.

4. While there are watermark bits left to be embedded do
Expand the histogram symmetrically;
Modify the lower n bits of the coefficients.

End while
5. Apply the inverse PLHaar transform and output the

watermarked image.
Data extraction and image recovery:
1. Transform the watermarked image using PLHaar.
2. Extract the pivot value and the length of the hidden data

from the coefficients in the first row.
3. While there are watermark bits left to be extracted do

Extract the lower n bits of the coefficients;
Shrink the expanded histogram back.

End while
4. Recover the coefficients in the first row.
5. Apply the inverse PLHaar transform to recover the

original image.
About the above algorithm, the following three points help
to make it perform obviously better:
(1) The scanning order for data extraction is the same as

that of data embedding from the pivotal bin to both
sides.

(2) If there are no empty bins in the coefficient histogram,
use the coefficients of small bins as the shifting
locations, and the overhead can be embedded into any
pre-designated coefficients.

(3) The choice of the pivotal bin should be determined by
the applications and the characteristics of a histogram.
For high embedding capacity requirements, the pivot
can be the highest bin in the histogram. For high
image quality requirements, the pivot can be chosen
for fewer bin shifts.

Fig. 4 Grayscale images used for experiments

4. EXPERIMENTAL RESULTS

The performance of our proposed reversible data hiding
algorithm has been demonstrated by a number of
experiments on six 512512 grayscale images shown in
Fig.4 and an artificial image with exactly flat histogram.

Fig. 5 (Left) Histogram of coefficients of Lena image
(Mid) Artificial image with exactly flat histogram

(Right) Histogram of the coefficients of the artificial image

Our experiments show that the proposed algorithm of
symmetrical expansion of the PLHaar coefficient
histograms works well for both the natural images and the
artificial image. The test results of hidden data size and the
corresponding PSNR are listed in Table 1.

Table 1 Capacity (bytes) and PSNR (dB) for the test images
50.69 46.14 44.49 42.65 40.10 37.93 34.04Barbara 1716 4961 6652 7871 10482 12662 16298
49.77 44.59 41.35 37.12 35.56 34.20 32.46

Lena
4178 8131 11568 16662 18403 19731 21238
49.75 44.55 42.42 39.51 37.48 35.78 33.96Boat 4515 8576 9971 11478 16297 17604 18569
50.65 44.98 41.62 39.11 37.13 35.44 33.98Jet 5927 9789 13591 15998 17635 18975 19832
51.28 45.31 41.82 39.34 37.41 35.84 33.35Baboon 1551 3004 4435 5837 7202 8476 10884
49.94 44.73 41.44 39.07 37.20 35.64 33.13Gold 3105 6045 8746 11151 13243 15033 17871
30.01 26.97 --- --- --- --- ---Artificial 1461 2922 --- --- --- --- ---

In Table 1, the numbers in the upper row for each image are
PSNR of the watermarked images relative to the original
image, and those in the lower row are the corresponding
capacity for data hiding. Artificial represents the man-made
artificial image shown in Fig.5. Table 1 shows that our
algorithm achieves very high embedding capacity at PSNR
around 50dB. Actually, higher capacity can still be
exploited with our algorithm.

Table 2 Capacity comparison (in bytes) between ours and other
reversible watermarking methods [4] at high PSNR(dB)

Lena (512*512*8) Baboon (512*512*8)Method Capacity PSNR Capacity PSNR
Honsinger et al [1] <128 --- <128 ---

Macq et al [10] <256 --- <256 ---
Fridrich et al [2] 128 --- 128 ---
Goljan et al [3] 3014 39 364 39
Xuan et al [7] 3277 48.2 3277 42.04
Celik et al [9] 1537 46.9 746 42.1

Ni et al [4] 683 48.2 678 48.2
Ours 4178 49.77 3738 42.66

II 267

We have also compared our method with other
methods [4], and the information is listed in Table 2. It
shows that our method achieves the highest data hiding
capacity.

Fig.6 Capacity-PSNR performance on the test images

Capacity-PSNR performance of our algorithm is shown
in Fig.6. It gives the information about the progressiveness
of our method. Data are embedded into an image
progressively from the lower-right end upwards to the
upper-left of the curves. Fig.7-9 show the performance
comparison between our algorithm and Celik’s, which
performs well in the literature of reversible data hiding. The
figures show that our algorithm achieves higher capacity at
the same PSNR for all the test images, or interpreted as
higher PSNR at the same capacity.

Fig.7 Comparison with Celik’s algorithm on Lena and Barbara

Fig.8 Comparison with Celik’s algorithm on Baboon and Gold

5. CONCLUSIONS

PLHaar does not lead to overflow or underflow, so our
proposed algorithm for reversible data hiding in PLHaar

transform domain is simple and efficient. Our new
algorithm uses symmetrical histogram expansion in PLHaar
transform domain, and it performs well with all the test
images and outperforms all other methods for high image
quality applications. Anyway, there should be some other
transforms that keep the dynamic range and perform better.
To search for such transforms is an interesting subject of
research in the future.

Fig.9 Comparison with Celik’s algorithm on Boat and Jet

6. REFERENCES

[1] C. Honsinger, P. Jones, M. Rabbani and J.Stoffel, “Lossless
recovery of an original image containing embedded data,” US
Patent, No.US6278791, 1999.
[2] J. Fridrich, M. Goljan and R. Du, “Invertible authentication,”
Proc. SPIE, Security and watermarking of multimedia contents,
San Jose, California, pp. 197-208, January 23-24, 2001.
[3] M. Goljan, J. Fridrich and R. Du, “Distortion-free data
embedding,” Proc. 4th Information Hiding Workshop, Pittsburgh,
pp. 27-41, Apr. 2001.
[4] Z. Ni, Y. Shi, N.Ansari and W. Su, “Reversible data hiding,”
IEEE Trans. on Circuits and Systems for Video Technology,
Vol.16, No.3, March 2006.
[5] G. Xuan, J. Zhu, J. Chen, Y. Shi, Z. Ni and W. Su,
“Distortionless data hiding based on integer wavelet transform,”
IEE Electronics Letters, Vol.38, No.25, pp. 1646-1648, Dec. 2002.
[6] J. Tian, “Reversible data embedding using a difference
expansion,” IEEE Trans. on Circuits and Systems for video
Technology, Vol.13, No.8, August 2003.
[7] G. Xuan, J. Zhu, J. Chen, Y. Shi, Z. Ni and W. Su, “Reversible
data hiding on wavelet spread spectrum,” IEEE Proceedings of
Multimedia Signal Processing Workshop, Siena, Italy, Sept. 2004.
[8] B. Yang, M. Schmucker, W. Funk, C. Busch and S. Sun,
“Integer DCT-based reversible watermarking for images using
companding technique,” Proceeding of SPIE, Security and
watermarking of Multimedia Content, San Jose (USA), 2004.
[9] M. Celik, G. Sharma, A. Tekalp and E. Saber, “Lossless
generalized-LSB data embedding,” IEEE trans. on image
processing, Vol.14, No.2, February 2005.
[10] B. Macq and F. Deweyand, “Trusted headers for medical
images,” presented at the DFG VIII-D II Watermarking Workshop,
Erlangen, Germany, Oct. 1999.
[11] J.Senecal, M. Duchaineau and K. Joy, “An improved n-bit to
n-bit reversible Haar-like tramsforms,” Pacific Conference on
Computer Graphics and Applications, August 16-18, 2004.

II 268

