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ABSTRACT

This paper proposes a face recognition approach that per-
forms linear discriminant analysis in the whole eigenspace.
It decomposes the eigenspace into two subspaces: a reliable
subspace spanned mainly by the facial variation and an unsta-
ble subspace due to nite number of training samples. Eigen-
values in the unstable subspace are replaced by a constant.
This alleviates the over- tting problem and enables the dis-
criminant evaluation in the whole space. Feature extraction
or dimensionality reduction occurs only at the nal stage af-
ter the discriminant assessment. These efforts facilitate a dis-
criminative and stable low-dimensional feature representation
of the face image. Experimental results comparing some pop-
ular subspace methods on FERET and ORL databases show
that our approach consistently outperforms others.

Index Terms— Face recognition, feature extraction, im-
age recognition.

1. INTRODUCTION

Face recognition has gained signi cant attention in the last
two decades due to its immense potential applications. Af-
ter the introduction of the linear discriminant analysis (LDA)
[1] in face recognition, numerous subspace based methodolo-
gies have been proposed. However, these methods discard a
subspace before the discriminant evaluation to solve the sin-
gularity problem of the within-class scatter matrix. Fisherface
(FLDA) [1] applies the principal component analysis (PCA)
for dimensionality reduction before the application of LDA.
The direct-LDA (DLDA) approach [2] rst removes the null
space of the between-class scatter matrix and then extracts
the eigenvectors corresponding to the smallest eigenvalues of
the within-class scatter matrix. Open question is how to scale
the extracted features properly as the smallest eigenvalues are
very sensitive to noise. Null space based approach (NLDA)
[3] assumes that the null space of the within-class scatter ma-
trix contains the most discriminative information and hence
discards the range space. Interestingly, this appears to con-
tradict the FLDA that only uses the range space and discards
the null space. The uni ed framework of subspace methods
(UFS) [4] discards even more dimensions and evaluates the
discriminant value in a very small principal subspace. Its

good recognition performance shows that the small eigenval-
ues of the within-class scatter matrix are unreliable and hence
the removal of such dimensions from the discriminant evalua-
tion alleviates the over- tting problem. Open question is how
to choose the number of principal dimensions for the rst two
stages of subspace decompositions before selecting the nal
number of features in the third stage.

A common problem of all these approaches is that they all
lose some discriminative information, either in the principal
or in the null space. As addressed in the literature, dimension
reduction before the discriminant evaluation may result in the
loss of crucial discriminative information [5, 6]. In fact, the
discriminative information resides in the whole space. This
is evidenced by the good recognition performance achieved
by the dual-space approach (DSL) [6], which combines fea-
tures extracted from the two complementary subspaces. Open
questions of this approach are how to divide the space into
the principal and the complementary subspaces and how to
apportion a given number of features to the two subspaces.
Furthermore, as the discriminative information resides in the
both subspaces, it is inef cient or only suboptimal to extract
features separately from the two subspaces.

In this paper, we present a new approach that performs
discriminant evaluation in the whole space (DEWS). It de-
composes the eigenspace of the within-class scatter matrix
into a reliable and an unstable subspaces by nding the mini-
mal value of the eigenratios. Eigenvalues in the unstable sub-
space are replaced by a constant to alleviate the over- tting
problem. This also enables the discriminant evaluation in the
whole space and hence extracts the most discriminative and
stable features for subsequent classi cation.

2. SUBSPACE DECOMPOSITION

Given a set of properly normalized face images, we can form
a training set of column vectors {Xij}, Xij ∈ R

n, for im-
age j of person i. Let the training set contain p persons and
qi sample images for person i. The number of total training
sample is l =

∑p
i=1 qi. If ci is the prior probability of person

i, the within-class scatter matrix is de ned by

Sw =
p∑

i=1

ci
qi

qi∑
j=1

(Xij −Xi)(Xij −Xi)T , (1)
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where Xi = 1
qi

∑qi
j=1Xij . Letting X =

∑p
i=1 ciXi, the

between-class scatter matrix Sb is de ned by

Sb =
p∑

i=1

ci(Xi −X)(Xi −X)T . (2)

If all classes have equal prior probability, then ci = 1/p.
It is well known that LDA is to solve the following eigen-

decomposition problem:

(Sw−1
Sb)Φ = ΦΛ, (3)

whereΛ is the diagonal eigenvalue matrix andΦ is the eigen-
vector matrix. Due to the singularity ofSw, various approaches
such as FLDA, DLDA, NLDA, UFS and DSL discard some
dimensions and evaluate the discriminant value only in a sub-
space, which results in the loss of discriminative information
[5, 6].

2.1. Problems in Feature Scaling And Extraction

The discriminant evaluation (3) can be performed by two sep-
arate eigen-decompositions: one for Sw and the other for Sb

projected to the whitened eigenvectors of Sw. Let Φw =
[φw
1 , ..., φ

w
n ] be the eigenvector matrix of Sw, and Λw be the

diagonal matrix of eigenvalues λw
1 , ..., λ

w
n corresponding to

the eigenvectors. We assume that the eigenvalues are sorted
in descending order λw

1 ≥, ...,≥ λw
n . The plot of eigenvalues

λw
k against the index k is called eigenspectrum. It plays a crit-

ical role in the subspace methods as the eigenvalues are used
to scale and extract features. The whitened eigenvector matrix
Φ̄w = [φw

1 /σ
w
1 , ..., φ

w
n /σ

w
n ], σw

k =
√
λw

k , is used to project
the image vector Xij before constructing the between-class
scatter matrix for the second eigen-decomposition. Thus, im-
age vector Xij is rst transformed by eigenvector, Yij =
ΦwTXij , and then multiplied by a weighting function ww

k =
1/
√
λw

k . Discarding dimensions that have zero eigenvalues is
equivalent to setww

k = 0 for these dimensions. The weighting
function is thus

ww
k =
{
1/
√
λw

k , k ≤ rw
0, rw < k ≤ n , (4)

where rw is the rank of Sw. Fig. 1 shows a typical real eigen-
spectrum and the resulting weighting function. We see an un-
due sudden decrease of weighting function from the maximal
value to zero. Furthermore, using the inverse of the square
root of the eigenvalue to weight the eigenfeature ampli es
noise and tends to over- t the training samples. The small
and zero eigenvalues are training-set-speci c and very sen-
sitive to different training sets. Adding new samples to the
training set or using different training set may easily change
some zero eigenvalues to nonzero and make some very small
eigenvalues several times larger. Therefore, these small and
zero eigenvalues are unreliable.
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Fig. 1. Real Eigenspectrum and weighting functions (4), (8).

2.2. Subspace Decomposition Using Eigenratio-spectrum

The limited number of training samples and the high dimen-
sionality of the image result in unreliable small and zero eigen-
values that may not well represent the true variance in the cor-
responding dimensions. Therefore, to improve the recogni-
tion accuracy, it is imperative to alleviate the problems of un-
reliable small and zero eigenvalues. It is well known that the
eigenspectrum of the face image decreases rapidly and then
stabilizes because the face variation resides in an intrinsic low
dimension. Therefore, the phenomenon that the eigenspec-
trum accelerates its decrease is caused by the limited number
of training samples. To study this, we de ne eigenratios as

γw
k =

λw
k

λw
k+1

, 1 ≤ k < rw. (5)

The plot of eigenratios γw
k against index k is called eigenratio-

spectrum. Fig. 2 shows a typical eigenratio-spectrum of a
real face training database. From the graph it is evident that
the eigenratios rst decreases very rapidly, then stabilizes and
nally increases. The limited number of the training sam-

ples causes the increase of the eigenratios. The corresponding
eigenvalues are thus unreliable. Therefore, the start point of
the unreliable regionm+ 1 is estimated by

γw
m+1 = min{∀γw

k , 1 ≤ k < rw}. (6)

3. EIGENFEATURE SCALING AND EXTRACTION

From Fig. 1 it is evident that the inverses of the eigenvalues
may cause undue over scaling of the features or eigenvectors
for k > m. Bayesian Maximum Likelihood (BML) [7] al-
gorithm uses a constant to replace the unreliable eigenvalues.
The average eigenvalue in the unreliable subspace is used as
the constant. The problem of this average eigenvalue is dis-
cussed in detail and an upper bound of eigenvalues in the un-
reliable subspace is proposed in [8] that enhances the recogni-
tion performance. However, there is no discriminant evalua-
tion in the BML approach and hence the full image dimension
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Fig. 2. Eigenratio-spectrum (5) from a real eigenspectrum.

is used in the classi cation, which is time consuming. In this
work, we replace the unreliable eigenvalues {λw

k }n
k=m+1 by

a constant obtained by

λw
const = max{∀λw

k , m ≤ k ≤ rw}. (7)

Thus, the nal weighting function can be written as

w̃w
k =
{
1/
√
λw

k , k ≤ m
1/
√
λw

const, m < k ≤ n . (8)

Fig. 1 shows the proposed feature weighting function w̃w
k

calculated by (5), (6), (7) and (8) comparing with that ww
k of

(4). Obviously, the new weighting function w̃w
k is identical

to ww
k in the principal subspace and remains constant in the

unreliable subspace and null space.
Using this weighting function and the eigenvectors φw

k ,
training samples are transformed to

Ỹij = Φ̃wT

n Xij , (9)

where

Φ̃w
n = [w̃

w
k φ

w
k ]

n
k=1 = [w̃

w
1 φ

w
1 , ..., w̃

w
n φ

w
n ] (10)

is a full rank matrix. There is no dimension reduction in this
transformation. A new between-class scatter matrix is then
formed by vectors Ỹij of the training data as

S̃b =
p∑

i=1

ci(Ỹ i − Ỹ )(Ỹ i − Ỹ )T , (11)

where Ỹ i = 1
qi

∑qi
j=1 Ỹij and Ỹ =

∑p
i=1

ci
qi

∑qi
j=1 Ỹij . The

discriminant evaluation in the whole space is performed by
solving the eigenvalue problem of S̃b. Suppose that the eigen-
vectors in the eigenvector matrix Φ̃b

n = [φ̃b
1, ..., φ̃

b
n] are sorted

in descending order of the corresponding eigenvalues. The
dimensionality reduction is performed here by keeping the
eigenvectors with the d largest eigenvalues

Φ̃b
d = [φ̃b

k]
d
k=1 = [φ̃b

1, ..., φ̃
b
d], (12)

where d is the number of features usually selected by a spe-
ci c application. Thus, the proposed feature scaling and ex-
traction matrix U is given by U = Φ̃w

n Φ̃
b
d. It transforms

a face image vector X , X ∈ R
n, into a feature vector F ,

F ∈ Rd, by F = UTX. In the experiments of this work, the
cosine distance measure and the rst nearest neighborhood
classi er (1-NNK) is applied to test the proposed approach of
discriminant evaluation in the whole space (DEWS).

4. EXPERIMENTS AND DISCUSSIONS

We evaluate our proposed algorithm on FERET and ORL
databases. In all the experiments, images are preprocessed
following the CSU Face Identi cation Evaluation System [9].
The proposed DEWS method is tested and compared with
PCA with Euclidian distance (PCAE), PCA with Mahalanobis
distance (PCAM), FLDA, BML, DSL and UFS approaches.

In the rst experiment, 2388 images comprising of 1194
persons are selected from the FERET database [10]. Images
are cropped into the size of 38×33. 497 people are randomly
selected for training and the remaining 697 people are used
for testing. There is no overlap in person between the training
and testing sets. The recognition error rate is the percentage
of the incorrect top 1 match on the testing set. Fig. 3 shows
the recognition error rate on the testing set against the number
of features d used in the matching.
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Fig. 3. Recognition error rate against the number of features
on the FERET database of 994/1394 training/testing images.

Fig. 3 shows that DSL that uses information from two
complementary subspaces performs better than PCAE, PCAM,
FLDA and BML approaches. However, for small number of
features, UFS outperforms DSL. This shows that it is inef -
cient or only suboptimal to extract features separately from
the two subspaces. The proposed DEWS approach consis-
tently outperforms all other approaches for all number of fea-
tures.

In the second experiment, images of the ORL database
[11] are cropped into the size of 57× 50. The ORL database
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contains 400 images of 40 people (10 images per person).
We use the rst 5 samples per person for training and the re-
maining 5 samples per person for testing. Hence, there are
200 images in the training set and 200 images in the testing
set. Fig. 4 shows the recognition error rate on the testing
set against the number of features. As the training set has
only 200 images, it may not well represent the variations of
testing images. Therefore, the small principal space does not
capture the discriminative information well. This results in
poor performance of FLDA. UFS discards more dimensions
before the discriminant evaluation and hence performs worse
than FLDA. DSL that extracts features in two complemen-
tary subspaces is better than FLDA. BML that works in the
whole space is better than DSL. Again, the proposed DEWS
approach consistently outperforms all other approaches for all
number of features.
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Fig. 4. Recognition error rate against the number of features
on the ORL database of 200 training and 200 testing images.

5. CONCLUSIONS

This work addresses problems of eigenfeature scaling and
extraction based on the linear discriminant analysis in face
recognition. Dimension reduction before the discriminant eval-
uation may result in the loss of crucial discriminative informa-
tion and the unreliable eigenvalues cause over- tting problem.
We de ne an eigenratio-spectrum to decompose the eigenspace
into a reliable and an unstable subspaces. Eigenvalues in the
unstable subspace are replaced by a constant determined by
the largest eigenvalues in this subspace. This not only alle-
viates the over- tting problem but also enables us to perform
the discriminant evaluation in the whole space. Feature ex-
traction or dimension reduction occurs only after the discrim-
inant assessment. These facilitate a discriminative and sta-
ble low-dimensional feature representation of the face image,
which boosts the face recognition accuracy. Experiments on
the FERET and ORL databases demonstrate that the proposed
approach consistently outperforms other approaches for all
number of features.
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