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Abstract — In this paper, a novel scheme is introduced

for human facial feature extraction. Unlike previous meth-

ods that fit a 3D morphable model to 2D intensity images,

our scheme utilizes 3D range images to extract features with-

out requiring manually-defined initial landmark points. A

linear transformation is used to achieve the mapping be-

tween the 3D model and a 3D range image, which makes

the computation simple and fast. Moreover, our scheme is

robust to the illumination and pose variations. In addition

to features from range images, extra features can be ob-

tained by examining optional 2D texture images. Using our

scheme, we can also perform automatic eye/mouth corner

localization. Experimental results show the high accuracy

and robustness of our scheme.

Index Terms — Face recognition, Computer vision, Geo-

metric modeling, Feature extraction

1. INTRODUCTION
Due to tighten homeland security in the US, face recog-

nition has attracted increasing interests recently. In a face

recognition system, facial feature extraction is the most sig-

nificant component. The goal is to automatically extract fea-

tures from face images with accuracy and robustness. Cur-

rently there are two approaches: one relies on 2D texture

images; another utilizes 3D range images.

The first approach is plagued by problems due to view-

point and lighting variations, which make it difficult to ex-

tract facial features accurately without human assistance.

For example, although methods based on the 3D morphable

model [1, 2] can handle illumination and viewpoint varia-

tions, they rely on manually-defined landmark points to fit

the 3D model to 2D intensity images.

The second approach utilizes depth information of 3D

range images to extract features. Since 3D range images

are invariant to illumination changes, the impact of light-

ing variations is moot in this approach. Furthermore, 3D

faces in range images can be rotated and shifted to a stan-

dard pose to overcome the problem caused by viewpoint

variations. Therefore, this approach becomes increasingly

attractive nowadays. Motivated by early research works

[3, 4] that began about a decade ago, different feature ex-
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traction techniques [5, 6, 7, 8, 9] have been proposed by

using wavelet-signature [5], curvature [9] and rigid surface

matching [6, 7, 8] techniques. These techniques, however,

have the problem of being sensitive to facial expression vari-

ations. While this problem was not addressed in [5, 6, 9],

a partial solution of the problem was addressed in [7, 8] by

using rigid surface matching.

In this paper we propose a method based on 3D mor-

phable model to extract facial features from range images.

In our scheme, a range image from a 3D image acquisition

system is normalized before being used as an input. Then

a synthesized 3D face is generated by minimizing the range

difference between the input range image and the 3D mor-

phable model. After this fitting procedure, features can be

obtained from the shape coefficients of the newly synthe-

sized 3D face. In addition, an extra optimization step can be

performed to extract extra features from an optional texture

image, which is generated from the 3D image acquisition

system together with the input range image.

Compared to the 3Dmorphable model methods in [1, 2],

which use 2D texture images as inputs, our method has

several advantages. First, initialization based on manually-

defined landmark points is not needed. In order to fit the

3D morphable model to a 2D texture face image, some key

information (e.g., locations of eye and mouth corners) of

the human face has to be given as initialization. Because a

texture image contains a mixture of shape and color infor-

mation of a human face, it is difficult to extract the shape

information accurately from the texture image without hu-

man assistance. In [1, 2], this important information is ex-

tracted manually. In our method, since input range im-

ages contain only the shape information, this key informa-

tion can be obtained automatically during the fitting proce-

dure. Therefore, manual initialization is not needed in our

method. Second, lighting variations, which typically lower

the accuracy of feature extraction, do not present a problem

in our method, because range images are robust to illumina-

tion changes. Third, a linear transformation is used to map

the 3D model to an input 3D range image, which makes the

computation simple and fast.

Compared to other range image-based feature extraction

techniques [5, 6, 7, 8, 9], our method can overcome the diffi-

culty caused by expression variations. This is due to the fact
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that the 3D morphable model [1, 2] contains example faces

with facial expressions. This allows us to closely synthesize

faces with facial expressions and extract features accurately.

In addition, our method can be used to automatically label

eye/mouth corners. Experimental results show the effective-

ness of our method.

2. ACQUISITION AND NORMALIZATION OF
INPUT IMAGES

In our system, the range images, along with the correspond-

ing texture images, are obtained by using a 3D image acqui-

sition system from 3Q Inc., which can generate high resolu-

tion 3D surface images in less than 2 milliseconds.

The obtained 3D meshes from the 3D image acquisition

system describe 3D faces with different orientations. These

3D “raw” faces cannot be directly used as inputs to our fit-

ting algorithm. In order to make the 3D faces have the same

orientation, we rotate and shift each of them until the mean-

squared-difference (MSD) between it and a standard face is

minimized. After the normalization, the eyes look straight

ahead and lie on a line parallel to the x-axis.

3. 3D MORPHABLE MODEL

The 3Dmorphable face model [1, 2] is constructed based on
a vector space representation of 3D faces. In this model, a
synthesized 3D face can be represented by a convex com-
bination of n shape and texture vectors Si and Ti (i =
1, . . . , n) of real human faces (example faces). Let s =
1
n

∑n
i=1 Si and t = 1

n

∑n
i=1Ti, then we can obtain co-

variance matrices AS = 1
n

∑n
i=1(Si − s)(Si − s)T and

AT = 1
n

∑n
i=1(Ti − t)(Ti − t)T . We further calculate the

ith eigenvalue σ2R,i and its corresponding eigenvector si of
AR. Similarly, let σ

2
T,i and ti be the ith eigenvalue and the

corresponding eigenvector of AT . The shape and color of a
synthesized face can be represented by a shape vector s and
a texture vector t, respectively, with

s = s+
nX

i=1

αisi, t = t+
nX

i=1

βiti, (1)

where the distributions of the coefficientsα = (α1, . . . , αn)T
and β = (β1, . . . , βn)T are:

p(α) ∝ exp(−1
2

nX

i=1

α2i
σ2R,i

), p(β) ∝ exp(−1
2

nX

i=1

β2i
σ2T,i

). (2)

Given an index i and coefficients α and β, a point p of
the 3D model can be defined by its 3D position s(i,α) =
(x(i,α), y(i,α), z(i,α)) and its color t(i,β) = (r(i,β),
g(i,β), b(i,β)).

The 3D model is placed in the 3D space with the eyes

on a line parallel to the x-axis and looking straight ahead.

So the 3D morphable model and the 3D faces in the nor-

malized input range images have the same head pose. As

we will see later, this property simplifies the computation of

our algorithm.

4. FEATURE EXTRACTION FROM RANGE
IMAGES

The key step of our feature extraction method is to fit the

3D morphable model to an input 3D range image. After

the fitting procedure, the shape coefficients of the model are

optimized and become range features of the human face in

the image.

4.1. Automatic Initialization
In the work presented in [1, 2], several manually-defined

landmark points are used to initialize the feature extraction

procedure. In our method, as we explained in the Intro-

duction, automatic initialization is achieved by using range

images that contain only the shape information.

4.2. 3D Transformation
In the 3D-2D transformation presented in [2], a perspec-
tive projection is used to map the 3D morphable model to
a 2D image, which makes the transformation nonlinear. In
our scheme, the mapping between the 3D morphable model
and a 3D range image is a linear transformation because the
perspective projection is not needed. Since the 3D model
and the normalized input 3D faces have the same head pose,
this linear transformation can be further simplified to scal-
ing and shifting. Let the original coordinates of a point p
be (x(i,α), y(i,α), z(i,α)), which are defined by the in-
dex i and the shape coefficients α2. We use the following
transformation to transfer the origin coordinates to the new
coordinates (x′(i,α), y′(i,α), z′(i,α)):

x′(i,α) = scalex,y · x(i,α)− offx, (3)

y′(i,α) = scalex,y · y(i,α)− offy, (4)

z′(i,α) = scalez · z(i,α)− offz. (5)

In the above transformation, the values of the scale factors

scalex,y , scalez and the offsets offx, offy and offz de-
pend on the input range image format. Note that scalex,y

and scalez may not have the same value.

4.3. Cost Function
Let R represent the input range image and m be the length
of the corresponding shape vector s. When an index i (i =
1, . . . ,m) of s and the shape coefficients α are given, the
described linear transformation maps the original coordi-
nates s(i,α) to the new coordinates (x′(i,α), y′(i,α),
z′(i,α)). We define the cost function as the sum of the
squared difference between the transformed depth z′(i,α)
and the corresponding range image depth R(x′(i,α),
y′(i,α)), which can be represented as

C(α) =

mX

i=1

(z′(i,α)−R(x′(i,α), y′(i,α)))2. (6)

Note that this cost function is based on all the indices of the

shape vector s. In other words, we use C(α) to measure the
entire range difference between the 3D model and the 3D

face in R. This cost function can then be minimized by us-
ing standard optimization methods (e.g., Newton’s method).

2We do not have texture coefficients β when only range images are
involved.
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4.4. Maximum A Posteriori Estimator
Minimization of cost function C(α) with respect to α may
produce unrealistic 3D faces. So we use a maximum a
posteriori (MAP) estimator to modify C(α). Given an in-
put image R, we try to maximize the posterior probability
p(α|R) with respect to the shape coefficients α. According
to the Bayes rule,

p(α|R) ∝ p(R|α)p(α). (7)

Given the shape coefficientsα of the model, the distribution
of an input range image R is assumed to follow a normal
distribution, i.e., p(R|α) ∝ exp(− 1

2σ2R
C(α)). The poste-

rior probability is then maximized by minimizing

C′(α) = −2 log p(α|R) = 1

σ2R
C(α) +

nX

i=1

α2i
σ2R,i

, (8)

where σ2R is a controllable parameter representing the rela-
tive weight of C(α) in C ′(α). Thus after the modification
of the MAP estimator, C ′(α) is the cost function that we try
to minimize by optimizing the shape coefficients α.

4.5. Optimization Procedure
The cost function C(α) is based on all the indices of the
shape vector s. In order to accelerate the minimization of
C(α)without falling into local minima, we employ a stochas-
tic version of Newton’s method. In each iteration, eighty in-
dices of s are randomly selected to compose a set K. Based
on the set K, a new cost function CK is defined:

CK(α) =
X

i∈K
(z′(i,α)−R(x′(i,α), y′(i,α)))2. (9)

The corresponding cost function after the modification of
the MAP estimator becomes:

C′
K(α) =

1

σ2R
CK(α) +

nX

i=1

α2i
σ2R,i

. (10)

In each iteration, the first and second derivatives of CK(α)
with respect to the jth shape coefficient αj (j = 1, . . . , n)
can be calculated as
∂CK(α)
∂αj

=
X

i∈K
2(z′(i,α)−R(x′(i,α), y′(i,α)))·

(
∂z′(i,α)
∂αj

− ∂R(x′(i,α), y′(i,α))

∂x′ · ∂x
′(i,α)
∂αj

− ∂R(x′(i,α), y′(i,α))
∂y′ · ∂y

′(i,α)
∂αj

),

(11)

∂2CK(α)
∂α2j

=
X

i∈K
2(
∂z′(i,α)
∂αj

− ∂R(x′(i,α), y′(i,α))
∂x′ · ∂x

′(i,α)
∂αj

− ∂R(x′(i,α), y′(i,α))
∂y′ · ∂y

′(i,α)
∂αj

)2

+
X

i∈K
2(z′(i,α)−R(x′(i,α), y′(i,α)))

· (∂
2z′(i,α)
∂α2j

− ∂2R(x′(i,α), y′(i,α))
∂α2j

).

(12)

With these derivatives, we can further obtain the derivatives
∂C′

K(α)
∂αj

and
∂2C′

K(α)

∂α2
j

(j = 1, . . . , n). The shape coeffi-

cients α are updated according to α = α − λH−1∇C ′
K,

where H−1 ≈ diag(1/∂2C′
K(α)

∂α2
j
) (j = 1, . . . , n) is the in-

verse Hessian matrix and λ� 1 the learning rate.

4.6. Segmentation
In some subregions (e.g., eyes and mouth) of a 3D face, the

range differences are subtle. Thus if we use the whole 3D

morphable model to minimize the cost function C(α), the
locations of these subregions on the resulting synthesized

3D face may not match those on the input range image. We

therefore segment the 3D model into three separate subre-

gions (e.g., eyes, nose and mouth in Fig. 1). After fitting the

whole 3D model to a range image, we independently min-

imize C(α) based on these subregions. This segmentation
step improves the detailed description of the subregions on

the synthesized 3D face.

Fig. 1. Three segmented subregions on the 3D morphable model.

5. FEATURE EXTRACTION FROM TEXTURE
IMAGES

So far our feature extraction method only utilizes 3D range

images for feature extraction. Extra features can be obtained

by minimizing the color difference between the 3D model

and 2D texture images. The details of the procedure are

omitted here because of space limitations. Thus our feature

extraction method can be considered as a 3D+2D approach

that utilizes both 3D range and 2D texture images for feature

extraction.

6. EXPERIMENTAL RESULTS
6.1. Test Data Set

Fig. 2. An example of range (left) and texture (right) images.
The test data set contains both range and texture images.

Each human face is represented by a pair of range and tex-

ture images as shown in Fig. 2. A range/texture image is

500×750 and each pixel has 8 bit resolution. These images
are normalized before being used as inputs of our fitting al-

gorithm. The normalized range and texture images have the

following properties: 1) the tip of the nose on a range image

is at the center of the image; 2) the depth of the tip of the

nose has the gray level of 255; 3) zero gray level represents

a plane 82 mm behind the tip of the nose.
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6.2. Synthesis of Range and Texture Images
We test our algorithm by reconstructing 3D faces from input

images. For display purposes, an extra fitting procedure is

used to recover the color information of an input face. We

show a fitting example in Fig. 3. The shape coefficients are

optimized by fitting the 3D morphable model to the range

image in Fig. 3 (a). After that, we fix the shape coefficients

and optimize the color coefficients by fitting the 3D model

to the texture image in Fig. 3 (b). Finally, we show the

frontal view of the synthesized 3D face in Fig. 3 (c).

(a) (b) (c)
Fig. 3. Fitting results. (a) Original range image. (b) Original
texture image. (c) Synthesized image.

Fig. 4. Fitting results on a smiling face without perfect normal-
ization. Top left: input range image; Top middle: input texture

image; Top right: frontal view of the synthesized 3D face; Bottom

row: different views of the synthesized 3D face.

Some of the faces in the data set are not well normalized

and some have facial expressions, beards and mustaches.

Fig. 4 shows a fitting example on one of such faces. An

extra fitting based on texture image is performed for display

purposes. In this example, the face in the range and texture

images has a cheerful facial expression and the right eye is

slightly higher than the left eye. After the automatic face

fitting procedure, the frontal view (Fig. 4 [top right]) and

other views (Fig. 4 [bottom row]) of the synthesized 3D face

are shown to demonstrate the effectiveness of our method.

6.3. Feature Localization
To further test the performance of our algorithm, we run our

proposed algorithm on 100 range images to label the posi-

tions of the tip of the nose, eye corners and mouth corners.

Some of the results are shown in Fig. 5. Again for display

purposes, we show the labeling results on texture images,

although our tests are performed on range images only. It is

seen that our proposed algorithm produces accurate local-

ization results.

Fig. 5. Localization results.
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