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ABSTRACT

This paper tackles the problem of pose variations in a 2D face recog-
nition scenario. Using a training set of sparse face meshes, we built
a Point Distribution Model and identi ed the parameters which are
responsible for controlling the apparent changes in shape due to turn-
ing and nodding the head, namely the pose parameters. Given a test
image and its associated mesh, the pose parameters are set to typ-
ical values of frontal faces, thus obtaining a virtual frontal mesh.
Taking advantage of facial symmetry, we overcome problems due
to self-occlusion and virtual frontal faces are synthesized via Thin
Plate Splines-based texture mapping. These corrected images are
then fed into a recognition system that makes use of Gabor ltering
for feature extraction. The CMU PIE database is used to assess the
performance of the proposed method in a closed-set identi cation
scenario where large pose variations are present, achieving state-of-
the-art results.

Index Terms— Face Recognition, Image generation, Spline func-
tions

1. INTRODUCTION

This paper addresses one of the major issues within the general face
recognition problem: dealing with pose changes. It is well known
that the performance of face recognition systems drops drastically
when pose differences are present within the input images, and it has
become a major goal to design algorithms that are able to cope with
this kind of variations. Up to now, the most successful algorithms
are those which make use of prior knowledge of the class of faces.
In [2], Beymer and Poggio extend the earlier attempt presented in [1]
(whose main drawback was that images from different view-points
were needed for every client). From a single image of a subject and
making use of face class information, virtual views facing different
poses are synthesized and used in a view-based recognizer. In [6],
Blanz and Vetter propose a 3D Morphable Model, where each face
can be represented as a linear combination of 3D face examplars.
Given an input image, the 3D Morphable Model is tted, recover-
ing shape and texture parameters following an analysis-by-synthesis
scheme. Several approaches make use of the 3D Morphable Model
to perform recognition. The main drawback of these methods is the
high computational complexity needed to recover image parameters.
In [7], Romdhani and Vetter report high recognition rates on the
CMU PIE database [15], by means of the 3D Morphable Model and
a tting algorithm that uses linear relations to update the shape and
texture parameters, which are then employed for recognition pur-
poses. Blanz et al. also use the 3D Morphable Model in [8] to syn-
thesize frontal faces from non frontal views, which are then fed into

the recognition system. In this same direction, other researchers have
tried to generate frontal faces from non frontal views, like the works
proposed by Xiujuan Chai et al. in [4], via linear regression in each
of the regions in which the face is divided, and in [5] where a 3D
model is used. In [9], Samaras and Zhang combine the strengths of
Morphable models to capture the variability of 3D face shape and
a spherical harmonic representation for the illumination. In [10],
Gross et al. propose to estimate the eigen light- elds of the sub-
ject’s head, using them for recognition across pose and illumination
changes with tests on the CMU PIE database.

Using a dataset containing sparse face meshes (62 points per im-
age), we built a Point Distribution Model and from the main modes
of variation, the parameters responsible for controlling the appar-
ent changes in shape due to turning and nodding the head (so-called
pose parameters) were identi ed, similar to the research by Lanitis
et al. [11], where the pose of the face was estimated using those
parameters. We propose a method in which the pose parameters are
set to typical values of frontal faces, so that a virtual frontal mesh
is obtained. Afterwards, taking advantage of facial symmetry, we
overcome problems due to self-occlusion and synthesize a virtual
frontal face by sampling texture from the original image onto the
new mesh, using Thin Plate Splines-based warping. There exist sim-
ilarities between our method and the works of Blanz et al. [8] and
Xiujuan Chai et al. [4], [5] as all of them try to generate frontal im-
ages. However, and among other differences, facial symmetry will
be taken into account, leading to important improvements in system
performance. Once the virtual face is obtained, Gabor responses are
extracted and used for comparison. The paper is organized as fol-
lows. Next section brie y reviews the concept of Point Distribution
Models. In section 3, we introduce the method to cope with pose
variations, describing the synthesis of virtual faces and the use of
facial symmetry. Section 4 explains feature extraction on corrected
images through Gabor ltering. Section 5 shows identi cation ex-
periments on the CMU PIE database. Finally, conclusions and future
research lines are drawn in section 6.

2. A POINT DISTRIBUTION MODEL FOR FACES

A point distribution model (PDM) of a face is generated from a
set of training examples. For each training image Ii, N landmarks
are located and their coordinates are stored, forming a vector Xi =
(x1i, x2i, . . . , xNi, y1i, y2i, . . . , yNi). The pair (xji, yji) represents
the coordinates of the j-th landmark in the i-th training image. Prin-
cipal Components Analysis is performed to nd the most important
modes of shape variation. As a consequence, any training shape Xi

can be approximately reconstructed:

Xi = X̄+ Pb, (1)
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Fig. 1. Effect of varying the pose parameters of the PDM. First row:
The parameter responsible for horizontal rotations in depth is varied.
Second row: Elevation parameter is modi ed. The middle column
shows the average shape of the training set.

where X̄ stands for the mean shape, P is a matrix whose columns are
unit eigenvectors of the rst t modes of variation found in the train-
ing set, and b is the vector of parameters that de ne the actual shape
of Xi. So, the k-th component from b (bk, k = 1, 2, . . . , t) weighs
the k-th mode of variation. Examining the shapes generated by vary-
ing bk within suitable limits, we nd those parameters responsible
for controlling the apparent changes in shape due to turning and nod-
ding the head, as indicated in gure 1. Let bpose be the set of param-
eters which accounts for pose variation. Also, since the columns of P
are orthogonal, we have that PT P = I, and thus b = PT

(
Xi − X̄

)
,

i.e. given any shape, it is possible to obtain its vector of parameters
b and, in particular, we are able to nd its pose (i.e. bpose). We built
a 62-point PDM using a set of manually annotated landmarks1.

When a new image containing a face is presented to the system,
the vector of shape parameters that ts the data, b, should be com-
puted automatically. There exist several techniques like [12] to deal
with this problem. In this work we have used manual annotations
instead, which allows us to test the classi cation performance alone,
without the effect of landmark detection errors.

3. POSE CORRECTION

Given a test image Itest with unknown identity and a training im-
age Itrain of a given client, the system must output a measure of
similarity (or dissimilarity) between them. Straightforward texture
comparison between Itest and Itrain may not produce desirable re-
sults as differences in pose could be quite important. So, in order to
deal with these differences, we apply an algorithm that makes use of
the pose parameters.

3.1. Normalize to Frontal Pose and Warp (NFPW)

The method we propose aims to synthesize frontal faces from non
frontal views. Once the meshes have been tted to Itrain and Itest,
their respective vectors of shape parameters, btrain and btest are
computed, and only the subset of parameters that account for pose
variations are xed to typical values of frontal faces (as the average
shape corresponds to a frontal face, we decided to x pose param-
eters to zero, i.e. bpose

train = bpose
test = �0), obtaining the modi ed

vectors of shape parameters b̂train and b̂test. New mesh coordi-
nates are computed using equation (1), and virtual images, Îtrain

1
http://www-prima.inrialpes.fr/FGnet/data/07-XM2VTS/xm2vts-markup.html

and Îtest, must then be synthesized by warping the original faces
onto the new shapes.

3.2. Thin Plate Splines texture mapping

For the synthesis of virtual faces, we used a method developed by
Bookstein [14], based on thin plate splines. Provided the set of cor-
respondences between the original mesh X and the corrected one
X̂, the original face I is allowed to be deformed so that the original
landmarks are moved to t the new shape, as it can be seen in gure
2. Thin Plate Splines are a class of non-rigid spline mapping func-
tions f (x, y) with several desirable properties for our application.
They are globally smooth, easily computable, separable into af ne
and non-af ne components and contain the least possible non-af ne
warping component to achieve the mapping. By using two separate
thin plate spline functions fx and fy which model the displacement
of the landmarks in the x and y direction we arrive at a vector-valued
function F = (fx, fy) which maps each point of the source image
onto a new point in the target image: (x, y)→ (fx (x, y) , fy (x, y))
. This spline de nes a global warping of space, and is therefore used
to warp the entire source image onto the target mesh.

Normalization

Pose

Flexible shape
model fitting

Test image

Warping

TPS

I

X X

I

Fig. 2. Block diagram for pose normalization using NFPW. TPS
stands for Thin Plate Splines.

3.3. Taking advantage of facial symmetry

As explained before, the synthesis of a virtual image is accomplished
by sampling texture from the original one. The problem arises when,
due to self-occlusion, some face regions become not visible, i.e. tex-
ture is not available, and hence the corresponding regions in the pose
normalized image do not represent subject’s appearance correctly. In
order to overcome this drawback, we take advantage of the vertical
symmetry of the face. For a horizontal rotation in depth of the head
and once the mesh has been tted, the parameter controlling the az-
imuth angle indicates whether the face is showing mostly its right
or its left side. Whenever a frontal face is synthesized from a non-
frontal view, we warp the original image and its mirror version onto
the pose-corrected frontal mesh and then blend the two virtual im-
ages, using simple masks that weigh the two sides of the face appro-
priately (according to the current rotation -left or right- of the head),
as it can be seen in gure 3.

4. FEATURE EXTRACTION

The recognition engine is based on Gabor ltering. Gabor lters
are biologically motivated convolution kernels in the shape of plane
waves restricted by a Gaussian envelope. Our system uses a set
of 40 Gabor lters with the same con guration as in [3]. The re-
gion surrounding a pixel in the image is encoded by the convolu-
tion of the image patch with these lters, and the set of responses
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is called a jet, J . So, a jet is a vector with 40 coef cients, and
it provides information about an speci c region of the image. At
each of the nodes of the pose-normalized mesh, a Gabor jet is ex-
tracted and stored for comparison. Given two images to be com-
pared, say I1 and I2 with node coordinates P = { �p1, �p2, . . . , �pN}
and Q = {�q1, �q2, . . . , �qN}, their respective sets of jets are com-
puted: {J�pi}i=1,...N

and {J�qi}i=1,...N
. Finally, the score between

the two images is given by:

S = fN {< J�pi ,J�qi >}
i=1,...,N

(2)

where < J�pi ,J�qi > represents the normalized dot product between
correspondent jets, but taking into account that only the moduli of
jet coef cients are used. In equation (2), fN stands for a generic
combination rule of the N dot products (for this work, we chose
fN ≡ mean).

X

X
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Fig. 3. Taking advantage of facial symmetry for image synthesis

5. FACE IDENTIFICATION ON THE CMU PIE DATABASE

In [16], the NFPW method (without symmetry) was tested on the
XM2VTS database [13], achieving good authentication results. How-
ever, the XM2VTS is mainly a frontal face database and hence, it is
not suitable to assess the performance of the method under large pose
variations. Moreover, we want to test whether there exist improve-
ments when facial symmetry is taken into account, and to compare
our technique with other pose-robust face recognition methods. For
these reasons, a more appropriate database was used: the CMU PIE
(Pose, Illumination and Expresion) database[15].

Fig. 4. Images taken from all cameras of the CMU PIE database for
subject 04006.

5.1. Database and experimental setup

The CMU PIE database consists of face images from 68 subjects
recorded under different combinations of poses and illuminations.

Figure 4 shows the images taken for subject 04006 from all cam-
eras under neutral illumination. In this paper, we use a subset of
the database, namely the images taken from cameras 11, 29, 27, 05
and 37 with neutral illumination. All of them (a total of 68 × 5
images) were manually annotated with 62 points per image. We
distinguish between gallery (training) and probe (testing) images.
The gallery contains images of known individuals, which are used
to build templates, and the probe set contains images of subjects
with unknown identity, that must be compared against the gallery. A
closed universe model is used to assess system performance, mean-
ing that every subject in the probe set is also present in the gallery.
We did not restrict ourselves to work with frontal faces as gallery. In-
stead, the performance of the system was computed for all possible
(gallery, probe) combinations.

5.2. Results

Table 1 shows the baseline results when no pose correction is ap-
plied. The average recognition rate is 68.38%. When the NFPW
method is used, the correct identi cation rate increases to 78.46%
(table 2). However, results are poor for completely different view-
points. As it can be seen from table 3, performance is clearly im-
proved if facial symmetry is taken into account, leading to an aver-
age recognition rate of 87.50%.

Table 1. Identi cation rates (%) on the CMU PIE database: No pose
correction

Probe Pose c11 c29 c27 c05 c37
Gallery Pose

c11 – 94.12 63.24 48.53 25.00
c29 97.06 – 92.65 66.18 39.71
c27 79.41 91.18 – 92.65 51.47
c05 67.65 80.88 98.53 – 88.23
c37 23.53 38.24 51.47 77.94 –

Table 2. Identi cation rates (%) on the CMU PIE database: NFPW
without facial symmetry

Probe Pose c11 c29 c27 c05 c37
Gallery Pose

c11 – 97.06 77.94 55.88 19.12
c29 98.53 – 98.53 73.53 44.12
c27 89.71 98.53 – 100 85.29
c05 67.65 85.29 100 – 97.06
c37 36.76 54.41 91.18 98.53 –

Table 3. Identi cation rates (%) on the CMU PIE database: NFPW
plus facial symmetry

Probe Pose c11 c29 c27 c05 c37
Gallery Pose

c11 – 97.06 88.23 80.88 66.18
c29 98.53 – 95.59 85.29 67.65
c27 94.12 98.53 – 100 89.71
c05 80.88 80.88 98.53 – 100
c37 70.59 64.71 94.12 98.53 –

Table 4 presents the recognition rates achieved with the use of
the 3D morphable model [6] and the LiST tting algorithm [7]. The
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average recognition rate is 88.45%. As we can see, NFPW plus sym-
metry achieves comparable performance over the set of considered
poses.In [4] and [5], only frontal images were used as gallery. The
recognition rates for these two methods are shown in the rst two
rows of table 5, with averages of 85.5% and 94.87% respectively.
For the same gallery, NFPW plus symmetry obtains 95.59% of cor-
rect recognition rate. The remaining rows from this table present the
results achieved with two different versions of the eigen light- eld
(ELF) approach [10]: the 3-point ELF (3 points - eyes and mouth
- are used to warp the face image) and the Complex ELF (where a
set of manually annotated points is used for the normalization). Due
to the use of manual landmarks, the last one is specially suitable for
comparison with our method. We can see that NFPW plus symme-
try outperforms the Complex ELF in the range of considered poses2

(88.79% compared to 82.5% correct recognition rate).

Table 4. Identi cation rates (%) on the CMU PIE database: 3D
Morphable Model with LiST tting algorithm [7]

Probe Pose c11 c29 c27 c05 c37
Gallery Pose

c11 – 94 94 74 65
c29 96 – 96 78 68
c27 93 97 – 99 94
c05 88 90 99 – 93
c37 82 82 93 94 –

Table 5. Identi cation rates (%) on the CMU PIE database: Other
results

Probe Pose c11 c29 c27 c05 c37
Method Gallery Pose

[4] c27 76.5 95.6 – 91.2 77.9
[5] c27 95 97 – 98 89

ELF 3-point c27 76 85 – 89 75
ELF 3-point c37 73 66 80 80 –

ELF Complex c27 76 90 – 94 90
ELF Complex c37 70 69 83 88 –

6. CONCLUSIONS

Based on a subset of the modes of a Point Distribution Model, namely
the pose parameters, we have proposed a method for pose correction
that makes use of the facial symmetry of the face. The identi ca-
tion experiments on the CMU PIE database show that the proposed
method achieves comparable results to the 3D morphable model and
outperforms other approaches in the set of considered poses. More-
over, it is con rmed that taking advantage of facial symmetry does
clearly improve system performance. Currently, the major draw-
back of our method is that it relies on manually annotated landmarks.
Hence, the next step will be to test the pose correction stage with au-
tomatic tting. Moreover, we must extend the algorithm in order to
cope with near-pro le views (where almost half of the landmarks are
not visible) by de ning correspondences between landmarks (and
views) from different angles. Another possible improvement could
be to learn a view-based weight function, so that depending on the
current pose of the face, some regions get more importance than oth-
ers in the computation of the nal similarity score.

2At the moment of writing this paper, only numerical results with poses
c27 and c37 as gallery could be obtained from the authors of [10].
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