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ABSTRACT
We report on our developments towards building a novel user au-
thentication system using combined acquisition of online handwrit-
ten signature and speech modalities. In our approach, signatures are
recorded by asking the user to say what she/he is writing, leading to
the so-called spoken signatures. We have built a veri cation system
composed of two Gaussian Mixture Models (GMMs) sub-systems
that model independently the pen and voice signal. We report on
results obtained with two algorithms used for training the GMMs,
respectively Expectation Maximization and Maximum A Posteriori
Adaptation. Different algorithms are also compared for fusing the
scores of each modality. The evaluations are conducted on spoken
signatures taken from the MyIDea multimodal database, accordingly
to the protocols provided with the database. Results are in favor of
using MAP adaptation with a simple weighted sum fusion. Results
show also clearly the impact of time variability and of skilled versus
unskilled forgeries attacks.

Index Terms— Handwriting recognition, speaker recognition,
pattern classi cation

1. INTRODUCTION

Multimodal biometrics has raised a growing interest in the industrial
and scienti c communities. The potential increase of accuracy com-
bined with better robustness against forgeries makes indeed multi-
modal biometrics a promising eld. In our work, we are interested
in building multimodal authentication systems using speech and sig-
natures as modalities. Speech and signatures are indeed two major
modalities used by humans in their daily transactions and interac-
tions. Many automated biometric systems based on signature or
speech alone have been studied and developed in the past [1] [2].
However, there are still few deployments in commercial applica-
tions. Three reasons can be proposed to explain this: (1) negative im-
pact of time-variability [3], (2) degraded performances in the case of
trained forgeries [4][5], (3) decreased performances in mismatched
conditions, such as mismatched sensors or environments [5]. Sev-
eral attempts have already been reported to improve signature veri -
cation systems using speech as an extra modality. In [6], a tablet PC
system based on online signature and speech is proposed to ensure
the security of electronic medical records. In [3], an online signature
veri cation system and a speaker veri cation system are also com-
bined to reach better authentication performances. The main differ-
ence between these works and our approach lies in the acquisition
procedure that is, in our case, simultaneous.

Our proposal is here to record bimodal signatures by asking the
user to simultaneously say and write the signature. Such bimodal
signatures are referred here as CHASM signatures for combined
handwriting and speech modalities signatures1, or more simply re-
ferred as, spoken signatures. The motivation of performing a syn-

1In a similar way, we have also de ned CHASM handwriting where the

chronized acquisition is multiple. Firstly, it avoids doubling the ac-
quisition time. Secondly, the synchronized acquisition will probably
give better robustness against intentional imposture as imitating si-
multaneously the voice and the writing of somebody else has a larger
cognitive load. Finally, the synchronization patterns (i.e. where do
users synchronize) or the intrinsic deformation of the inputs (mainly
the slowdown of the speech) may be dependent on the user, therefore
bringing useful biometrics information.

Our previous works on spoken signatures have been dedicated
to data acquisition [7], survey and de nition of realistic scenario of
use [8] and early experiments on a baseline system [9]. We report
in this paper on the continuation of the development of this system,
with the introduction of more advanced modelling techniques and
fusion strategies. More precisely, we report on results obtained with
two algorithms used for training our GMM based system, respec-
tively Expectation Maximization (EM) and Maximum A Posteriori
Adaptation (MAP). Different algorithms are also compared for fus-
ing the scores of each modality. Interesting conclusions are also
drawn regarding the impact of time variability and on the degrada-
tion due to skilled versus unskilled forgeries attacks.

The remainder of this paper is organized as follows. In section 2,
we give an overview of MyIDea, the database used for this work and
of the evaluation protocols. In section 3 we present our modelling
system based on a fusion of GMMs. Section 4 presents the experi-
mental results. Finally, conclusions, discussions and future work are
presented.

2. SPOKEN SIGNATURE DATABASE

2.1. MyIDea Database

Spoken signature data have been acquired in the framework of the
MyIDea biometric data collection [7] [10]. MyIDea database is a
multimodal database that contains other modalities such as nger-
print, talking face, etc. MyIDea contains about 70 users that have
been recorded over three sessions spaced in time. The data set used
to perform the experiments reported in this article has been given
the reference MYIDEA-CHASM-SET1 by the distributors of MyIDea.
This set should be considered as a development set. A second set
of data is planned to be recorded in a near future and will be used
as evaluation set. In MyIDea, spoken signatures have been acquired
with a WACOM Intuos2 graphical tablet and a standard computer
headset microphone (Creative HS-300). For the tablet stream, x,y-
coordinates, pressure, azimuth and elevation angles of the pen are
sampled at 100 Hz. The speech waveform is recorded at 16 kHz
and coded linearly on 16 bits. Fig. 1 shows an example of spoken
signature. The grey areas on the gure correspond to inter-stroke
moments, when the user lift the pen out of the range of the tablet.

user reads what he is writing. CHASM handwriting could be used for user
authentication or for enhanced content recognition, but this is out of the scope
of this paper where we focus on spoken signatures.
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Fig. 1. Synchronized visualization of handwriting (upper part in-
cluding x, y and p, not including angles for sake of clarity) and
speech signals (bottom part).

In [9], we provide more comments on spoken signature data and
on the way users synchronize their acoustic events with signature
strokes. In [11], we report on a usability survey conducted on the
subjects of MyIDea. The main conclusions of the survey are the fol-
lowing. First, all recorded users were able to perform the signature
acquisition. Speaking and signing at the same time did not prevent
any acquisition to happen. Second, the survey shows that such ac-
quisitions are acceptable from a usability point of view.

2.2. Evaluation Protocols

In MyIDea, six genuine spoken signatures are acquired for each sub-
ject per session. This leads to a total of 18 true acquisitions after the
three sessions. After acquiring the genuine signatures, the subject is
also asked to imitate six times the signature of another subject. Spo-
ken signature imitations are performed by letting the subject having
an access to the static image and to the textual content of the signa-
ture to be forged. This procedure leads to a total of 18 skilled forg-
eries after the three sessions, i.e. six impostor signatures on three
different subjects. Spoken signature assessment protocols have been
de ned on MyIDea [11]. The protocols have been crafted to be as
realistic as possible and to put in evidence dif culties tied to time
variability. Two protocols have been de ned. The rst one is called
without time variability where user models are built using three
spoken signatures of the rst session. For testing, the three remain-
ing signatures of the rst session are used. The same procedure is
repeated for sessions two and three, leading to a total of 70 users ×
3 accesses × 3 sessions = 630 genuine tests. For impostor attempts,
random forgeries are considered using one signature for each of the
remaining subjects in the database, giving a total of 70 users × 69
accesses × 3 sessions = 14490 random forgeries. Impostor tests
are also performed using skilled forgeries for which the 18 avail-
able skilled forgeries are used against each user, giving a total of 70
users × 18 accesses × 3 sessions = 3780 skilled forgeries. The sec-
ond protocol is called with time variability where the six signatures
from the rst session are used to build client models. Genuine tests
are performed on the six signatures of session two and three, giving
a total of 70 users × 12 accesses = 840 genuine tests. Random and
skilled impostor attempts are performed in the similar manner as for
the protocol without time variability with the distinction that models
are here trained on the rst session only, giving a total of 70 users

× 69 accesses = 4830 random forgeries and 70 users × 18 accesses
= 1260 skilled forgeries. The amounts of tests mentioned above are
approximative as some users did not complete all sessions.

3. SYSTEM DESCRIPTION

We have chosen to use standard GMMs to model independently both
streams of data, followed by a simple fusion at the score level (see
Fig. 2).
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Fig. 2. Baseline CHASM signature veri cation system.

3.1. Feature extraction

For each point of the signature, we extract 25 dynamic features based
on the x and y coordinates, the pressure and angles of the pen in
a similar way as what is described in [12] and [9]. The features
are mean and standard deviation normalized on a per user basis.
For the speech signal, we use 12 Mel Frequency Cepstral Coef -
cients (MFCC) and the energy extracted every 10 ms on a window
of 25.6 ms. An energy-based speech detection module based on a
bi-Gaussian model is applied to remove the silence from the data.
MFCC coef cients are mean and standard deviation normalized us-
ing normalization values computed on the speech part of the data.
We can already mention that we performed experiments including
delta and delta-delta coef cients without further improvements of
the results. Delta features were then left apart in our con guration.

3.2. GMMs System

GMMs are used to model the likelihoods of the features extracted
from the signature and from the speech signal. One could argue that
GMMs are actually not the most appropriate models in this case as
they are intrinsically not capturing the time-dependant speci cities
of speech and signatures. HMMs would be potentially more ade-
quate in this case. However, GMMs have been reported to com-
pare reasonably well to HMMs in terms of signature veri cation
[13] and are often considered as baseline systems in speaker veri ca-
tion. Furthermore, GMMs are well-known exible modelling tools
able to approximate any probability density function. With GMMs,
the probability density function p(xn|Mclient) or likelihood of aD-
dimensional feature vector xn given the model of the clientMclient,
is estimated as a weighted sum of multivariate Gaussian densities :

p(xn|Mclient) =

I∑

i=1

wiN (xn, μi, Σi) (1)

in which I is the number of mixtures, wi is the weight for mix-
ture i and the Gaussian densities N are parameterized by a mean
D × 1 vector μi, and a D × D covariance matrix, Σi. In our
case, we make the hypothesis that the features are uncorrelated and
we use diagonal covariance matrices. By making the hypothesis
of observation independence, the global likelihood score for the se-
quence of feature vectors, X = {x1, x2, ..., xN} is computed with
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Sc = p(X|Mclient) =
∏N

n=1 p(xn|Mclient). The likelihood score
Sw of the hypothesis thatX is not from the given client is here esti-
mated using a world GMM modelMworld or universal background
model trained by pooling the data of many other users. The decision
whether to reject or to accept the claimed user is performed com-
paring the ratio of client and world score against a global thresh-
old value T . The ratio is here computed in the log-domain with
Rc = log(Sc)− log(Sw). The training of the client and world mod-
els is performed with the Expectation-Maximization (EM) algorithm
that iteratively re nes the component weights, means and variances
to monotonically increase the likelihood of the training feature vec-
tors. In our setting, we apply a simple binary splitting procedure
to increase the number of Gaussian components through the train-
ing procedure. The world model is trained by pooling the available
genuine accesses in the database. The skilled forgeries attempts are
excluded for training the world model as it would lead to optimistic
results. Ideally, a fully independent set of users would be prefer-
able, but this is not possible considering the small number of users
(≈ 70) available. In this paper, we compare client models trained
from scratch using the EM algorithm with client models obtained
from an adaptation of the world model using a Maximum A Posteri-
ori criterion [14]. As suggested in many paper using MAP, we per-
form only the adaptation of the mean vector μi, leaving untouched
the covariance matrix Σi and the mixture coef cient wi.

3.3. Score Fusion

We obtain the spoken signature (ss) score by applying a weighted
sum of the signature (si) and speech (sp) log-likelihood ratios with
Rc,ss = WspRc,sp + WsiRc,si. This is a reasonable procedure if
we assume that the local observations of both sub-systems are in-
dependent. This is however clearly not the case as the users are
intentionally trying to synchronize their speech with the signature
signal. Time-dependent score fusion procedures or feature fusion
followed by joint modelling would be more appropriate than the ap-
proach taken here. More advanced score recombination could also
be applied such as, for example, using classi er-based score fusion.
We report here our results with or without using a z-norm score nor-
malization preceding the summation. As the mean and standard de-
viation of the z-norm are estimated a posteriori on the same data set,
z-norm results are of course unrealistic but give however an opti-
mistic estimation of what could be the performances.

4. EXPERIMENTAL RESULTS

We report our results in terms of Equal Error Rates (EER) which
are obtained for a value of T where the impostor False Acceptation
and client False Rejection error rates are equal. Table 1 shows the
evolution of the EER as a function of the number of mixtures in the
client and world models trained using the EM algorithm and using
protocol with time variability and random forgeries. We tested with
8, 16, 32 and 64 Gaussian mixtures in the client and world model.
Increasing the number of Gaussian further to 16 is actually showing
a performances degradation, probably due to the limited amount of
training data. The optimal model size for the EM algorithm seems
to lie around 16 mixtures. Similar conclusions were obtained for the
other protocols. As suggested in [3], we have also tried to vary the
number of mixtures around 16 as a function of the number of feature
vectors available for training the model of a speci c user. Doing
this, we obtained user-dependent numbers of mixtures. However,
our experiments did not show any signi cant improvements against
using a xed-number of mixtures.

Table 1. EM algorithm, EER as a function of the number of Gaus-
sian mixtures in the client and world models, protocol with time vari-
ability, random forgeries, equal weights for the fusion.

# of mixtures c/w 8/8 16/16 32/32 64/64
signature 7.4 6.1 6.2 6.8
speech 14.4 14.2 14.5 16.3
sum fusion (0.5/0.5) 5.4 4.1 4.6 6.0

Table 2 show results obtained on the same protocol but this time
using the MAP adaptation training. As the MAP algorithm leaves
untouched the Gaussian mixtures for which no or few training points
are associated, we could here increase the number of mixtures to
larger values. When comparing with the EM algorithm for equal
con gurations, the improvement is very much signi cant. Our best
results are obtained for the 128/128 con guration with an overall
performance of 1.7%. While MAP adaptation is actually known to
improve results for modelling speech with GMMs, the results re-
ported here are, to the best of our knowledge, the rst results re-
ported using GMM MAP adaptation to model signatures. One can
conclude from these results that MAP adaptation applies better than
EM when few training data is available to build the model.

Table 2. MAP algorithm, EER as a function of the number of Gaus-
sian mixtures in the client and world models, protocol with time vari-
ability, random forgeries, equal weights for the fusion.

# of mixtures c/w 32/32 64/64 128/128
signature 3.1 3.2 2.7
speech 11.8 13.3 12.4
sum fusion (0.5/0.5) 1.8 2.0 1.7

Table 3 summarizes the results with our best MAP 128/128 sys-
tem in terms of ERR for the different protocols. The following con-
clusions can be drawn. The speech modelisation performs equally
well than the signature for single session experiments (without time
variability). However, when multi-session accesses are considered,
signature performs better than speech. Signature and speech modal-
ities suffer from time-variability but in different degrees. It is prob-
able that users show a larger intra-variability for the speech than for
the signature modality. Another explanation could be in the acqui-
sition conditions that are more dif cult to control in the case of the
speech signal: different position of the microphone, environmental
noise, etc. Another conclusion from table 3 is that skilled forgeries
decreases systematically and signi cantly the performance in com-
parison to random forgeries. For the protocol with time variability,
a drop of about 200% relative performance is observed for the sig-
nature modality and about 50% for the speech modality. We have
to note here that the skilled forger do not try to imitate the voice
of the user but actually say the genuine verbal content. The sum
fusion, although very straightforward, brings systematically a clear
improvement of the results. Interestingly, the z-norm fusion is bet-
ter than the sum fusion for the protocol without time variability and
is worse in the case of the protocol with time variability. A visual
analysis of the score distribution of both modalities, before z-norm
and after z-norm, lead us to a potential intuitive interpretation of this
behavior. The application of the z-norm is, by nature, aligning the
score distributions of both modalities. While this is good to fuse
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Table 3. MAP adaptation, protocol with and without time variability,
skilled and unskilled forgeries, 128 Gaussian mixtures for the client
and 128 for the world, MAP adaptation, equal weights for the fusion.

time variability without with
forgeries random skilled random skilled
signature 0.4 3.9 2.7 7.3
speech 0.8 2.7 12.4 17.1
sum fusion (.5/.5) 0.2 0.9 1.7 5.0
z-norm fusion (.5/.5) 0.1 0.7 2.3 8.6

scores that lies in different ranges, the z-norm is also giving equal
importance to each modalities. This is of course not favorable in the
case of systems showing very different individual performances.

Figure 3 shows the evolution of the EER for different combi-
nations of the weights used for the sum fusion in the case of the
MAP 64 GMM system. As what could be expected, there are opti-
mal weight values that minimize the EER. For protocol without time
variability the optimal values are 0.3 and 0.7 for Wsi and Wsp re-
spectively. For protocol with time variability, the optimal values are
0.5 and 0.5 for Wsi and Wsp. Curves for the z-norm, although not
reported here, were similar as the one for the sum fusion but with
different optimal weight values. While improving further the perfor-
mances of our system, this optimization of the weights is optimistic
as it is done a posteriori on the scores. These values should be val-
idated on an independent evaluation set. We could also notice that,
when optimal weight values are used, there is no clear advantage of
using z-norm instead of the sum based fusion.

Fig. 3. Evolution of the EER as a function of fusion weights.

5. CONCLUSIONS AND FUTUREWORK

A veri cation system using GMMs for modelling spoken signatures
has been presented and evaluated. Results obtained with this system
show that the use of both modalities outperforms these modalities
used alone. Results also show that there is a clear impact of time
variability and skilled forgeries on the performances. The best re-
sults were obtained with a MAP adaptation procedure used to train
the system and a weighted sum fusion. In our future work, we plan to
investigate the use of more robust modelling techniques against time
variability and forgeries. In this direction, we have identi ed po-
tential modelling techniques such as HMMs, time-dependent score

fusion, fusion at the feature level followed by joint modelling, etc.
Also, as soon as an extended set of spoken signature data will be
available, experiments will be conducted according to a develop-
ment/evaluation set framework.
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