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ABSTRACT

We present a theoretical analysis of the Philips audio nger-
printing method under Gaussian white noise distortion for
correlated stationary Gaussian sources. Prior analyses were
for white Gaussian sources, which do not model realistically
real audio signals. Our approach relies on formulating the
unquantized ngerprint as a quadratic form, which affords a
systematic way to compute the model parameters. We pro-
vide closed-form analytical upper bounds for the probability
of bit error of the hash, and we apply these expressions to real
audio signals.

Index Terms— Audio ngerprinting, error analysis

1. INTRODUCTION

An audio ngerprint is a compact representation (hash) of
an audio signal linked to its perceptual content. Perceptu-
ally equivalent instances of the same audio signal must ap-
proximately lead to the same hash value. Fingerprinting (also
known as robust hashing) helps to identify audio signals in
noisy environments, and then it nds application in content
tracking in peer-to-peer networks, authentication, and ef -
cient indexing of multimedia databases [1]. An audio nger-
printing scheme that has proved to be remarkably robust is
the so-called Philips method proposed by Haitsma et al. [2],
based on quantizing differences of energy measures from over-
lapped short-term power spectra. Here we examine its the-
oretical performance through a statistical model. A perfor-
mance analysis for false positives was presented in [3]. A
more elaborate model was proposed by Doets and Lagendijk [4,
5, 6], for the uncorrelated Gaussian input signals. Of these
works, only [6] tackles the issue of evaluating the perfor-
mance of the ngerprinting method under random additive
distortion. Here we address the more general case with sta-
tionary correlated Gaussian input signals, from which that
previous analysis follows as a particular case. We also apply
this analysis to real audio signals.

Notation. Lower case bold face letters such as x repre-
sent column vectors, while matrices are represented by upper
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Fig. 1. Philips hashing algorithm, rearranged as in [5].

case Roman letters such as X. For a symmetric L × L ma-
trix X its eigenvalues are denoted by λ1(X) ≤ · · · ≤ λL(X).
diag(x) is a matrix with the elements of x in the diagonal
and zero elsewhere. tridiag(a, b, c) is a Toeplitz tridiagonal
matrix with constant diagonal elements b, and constant su-
perdiagonal and subdiagonal elements c and a, respectively.
trX denotes the trace of X. The 2-norm of x is denoted as
‖x‖ =

√
xT x, where the superindex T denotes transposition.

The symbol⊗ denotes the Kronecker (or direct) product.

2. STATISTICAL MODEL OF PHILIPS METHOD

We describe rstly the operation of the Philips method using
its equivalent rearrangement given in [5] (see Fig. 1). The in-
put signal x = (x[1], . . . , x[N ])T is divided into overlapped
frames before hashing it. If L is the number of samples in a
single frame and Δ the number of non-overlapping samples
between two frames, then the L-length vector xn formed by
the elements of x used in the computations corresponding to
the nth frame is given by xn � (x[n ·Δ + 1], · · · , x[n ·Δ +
L])T for n = 0, 1, 2, . . . Each framed signal xn is weighted
next by a window of weights w � (w[1], · · · , w[L])T before
taking its fast Fourier transform (FFT). Then, the vector at the
input of the FFT for frame xn is just diag(w) xn. The spec-
trum is then divided into Nb + 1 bands; we will assume the
logarithmic frequency band division given in [2], for which
Nb = 32. Denoting by En(m) the energy of band m for
input frame xn, an unquantized hash value is given by

Dn(m) � [En(m)−En(m+1)]−[En−1(m)−En−1(m+1)],
(1)
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with m = 0, 1, · · · , Nb − 1 and n = 0, 1, 2, · · · . The vari-
ables (1) completely determine the system, as the binary hash
value Fn(m) ∈ {0, 1} corresponding to frame n and band m
is just

Fn(m) � u (Dn(m)) , (2)

with u(·) the unit step function. In the acquisition stage,
that is, the rst time a given signal is hashed, these values
are stored for later comparison in the identi cation stage, in
which a signal to be recognized is hashed using the nger-
printing method. Our approach is based on modeling the
continuous random variables Dn(m). As in [7], we rely on
the periodogram estimator of the power spectrum of the win-
dowed signal at the n-th frame, which is given by

Sn(k) =
1

‖w‖2
∣∣∣∣∣

L−1∑
i=0

xn[i+ 1]w[i+ 1] exp
(
− j2πi k

L

)∣∣∣∣∣
2

,

for k = 0, · · · , L − 1, and where ‖w‖2 is a normalization
factor. Now, following [8], Sn(k) can be rewritten as

Sn(k) = xT
n M(k) xn, (3)

where the L× L matrix M(k) is de ned as

M(k) � 1
‖w‖2 Ω N(k) Ω. (4)

TheL×Lmatrix N(k) is de ned such that its entry at position
(i, j) is given by cos(2π(i−j)k/L), and Ω � diag(w). Using
the quadratic form (3) it is straightforward to express Dn(m)
as a quadratic form as well. De ning rst B(m) as the set of
integers indexing the periodogram samples in frequency band
m, we can write an estimate of the energy in this band as

En(m) =
∑

k∈B(m)

Sn(k) = xT
n

[ ∑
k∈B(m)

M(k)
]
xn. (5)

Considering (3) and (4), we de ne next the L × L matrix
R(m) � 1

‖w‖2 [
∑

k∈B(m) N(k) −∑
k∈B(m+1) N(k)]. Now,

plugging (5) in (1) and de ning P(m) � Ω R(m) Ω we
obtain

Dn(m) = xT
n P(m) xn − xT

n−1 P(m) xn−1. (6)

In order to write (6) as a single quadratic form, we de ne next
the extended vector x̃n � (x[(n− 1) ·Δ + 1], · · · , x[n ·Δ +
L])T , for n = 0, 1, 2, · · · , which includes all the components
of the overlapping vectors xn and xn−1 and which is of length
M � L+Δ. We assume the convention of padding with zeros
for indices out of range. De ning next the L ×M auxiliary
matrices

U � [ IL×L | OL×Δ ] , V � [ OL×Δ | IL×L ] ,

with I the identity matrix and O the null matrix of size given
by the subindices, we can build the matrix

Q(m) � UT P(m)U + VT P(m)V. (7)

which is formed by adding−P(m) at the position (1, 1) of an
emptyM ×M matrix with P(m) at the position (Δ+1,Δ+
1). Q(m) is symmetric because P(m) is so. Using (7) and
x̃n we can nally write (6) as

Dn(m) = x̃T
n Q(m) x̃n. (8)

For x̃n ∼ N (0,Z), (8) is consequently a quadratic form in
a Gaussian vector. The distribution of this r.v. may be ex-
pressed exactly as a weighted sum of χ2 distributions [9],
which is unwieldy for analysis. Nevertheless, for large M , a
Gaussian distribution suf ces to approximate the probability
density function (pdf) of (8). This approximation is supported
by the Central Limit Theorem (CLT) for independent identi-
cally distributed (i.i.d.) signals; for locally correlated signals
a broader version of the CLT can also be invoked. The ad-
equacy of this assumption will be con rmed empirically in
Section 4. The quadratic form (8) allows to easily compute
the parameters of the Gaussian model; the expectation1 and
variance of the variables (8) for Gaussian x̃ are [10]

E[Dn(m)] = tr [Z Q(m)] , (9)

Var[Dn(m)] = 2 tr
[
(Z Q(m))2

]
. (10)

3. PERFORMANCE ANALYSIS

The signal presented to the algorithm in the identi cation stage
may differ from the corresponding original indexed in the
database during acquisition. Next, we use our model to ex-
amine the probability of bit error (Pe) of the hash when the
distortion on x is assumed to be zero-mean additive white
Gaussian noise g ∼ N (0, σ2

g I). We assume that x̃n ∼
N (0,Z), where the M ×M covariance matrix Z = E[x̃nx̃T

n ]
is Toeplitz (i.e., the signal is stationary) with diagonal ele-
ments σ2

x. When the signal presented to the system is x̃n + g
instead of x̃n, the hash value (8) becomes

D′n(m) = Dn(m) + 2 x̃T
n Q(m)g + gT Q(m)g.

Before proceeding, let us de ne for notational simplicity the
variables S � Dn(m) and T � 2 x̃T

n Q(m)g + gT Q(m)g.
The expectation of S is computed using (9), which, using (7)
and applying the circular property of the trace, is

E[S] = − tr[UZUT P(m)] + tr[VZVT P(m)] = 0,

which is zero because Z is Toeplitz and then UZUT = VZVT .
For the same reason E[D′n(m)] = 0, and therefore E[T ] =
0. It is straightforward to show that S and T are uncorre-
lated, that is, E[S · T ] = 0, because g is zero-mean and
white. We have argued that we will model Dn(m) (and then
D′n(m)) by means of the Gaussian distribution. In this case
T must be modeled as a Gaussian too, and then, from un-
correlation, it follows that S and T are independent. In or-
der to complete the statistical characterization we just need

1The expectation is actually valid for an arbitrary zero-mean input pdf.
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the variances of the random variables involved. As Dn(m)
and D′n(m) are just quadratic forms on zero mean Gaussian
variables we may use (10) to obtain their variances. Doing
so we obtain σ2

S � Var[S] = 2 tr
[
(Z Q(m))2

]
. Similarly,

as Var[D′n(m)] = 2 tr
[(

(Z + σ2
g I)Q(m)

)2
]

it follows from

independence between S and T that

σ2
T � Var[T ] = 2σ2

g tr
[
(2Z + σ2

g I)Q2(m)
]
.

Denoting the error event at framen and bandm as εn(m) �
{F ′n(m) �= Fn(m)}, we are ready now to compute the prob-
ability of error at an individual frame and band, which, re-
calling (2), may be written as Pr[εn(m)] = 1

2 (Pr[S + T >
0|S ≤ 0] + Pr[S + T ≤ 0|S > 0]), as Pr[S ≤ 0] =
Pr[S > 0] = 1/2. Using the Gaussian Q-function Q(x) �
1/
√

2π
∫∞

x exp(−v2/2)dv, we can compute Pr[εn(m)] as

Pr[εn(m)] = 2
∫ ∞

0

Q
(
s

σT

)
fS(s) ds =

1
π

arctan
(
σT

σS

)
.

Plugging the corresponding moments in, we have nally that

Pr[εn(m)] =
1
π

arctan

(√
tr

[
(2Z̄ + I)Q2(m)

]
tr

[
(Z̄ Q(m))2

]
)
,(11)

with Z̄ � 1
σ2

g
Z. As shown in Appendix A, (11) is bounded by

Pr[εn(m)] ≤ 1
π

arctan

(√(
2 +

γu

ξ

)
γu

ξ

)
, (12)

where γu only depends on σ2
x and on the minimum eigenvalue

of Z and ξ � σ2
x

σ2
g

is the signal-to-noise ratio (SNR). Note

that (11) and (12) apply to the particular situation in which
the hashed signal is i.i.d. This case can be expressed exactly
in terms of ξ substituting Z̄ = ξ I in (11):

Pr[εn(m)] =
1
π

arctan

(√(
2 +

1
ξ

)
1
ξ

)
. (13)

The expression (13) was also previously obtained by Doets
and Lagendijk in [6]. Lastly, the probabilities (11) or (13)
cannot just be averaged to obtain the overall probability of bit
error due to the dependencies between the variables {Dn(m)}
—and therefore also {Fn(m)}— caused by the overlapping
of frames. Nevertheless, we can resort to an upper bounding
argument. The average probability of bit error will be

Pe =
1
Nf

1
Nb

Pr [∪n,m εn(m)] ≤ 1
Nf

1
Nb

Nf−1∑
n=0

Nb−1∑
m=0

Pr[εn(m)],

(14)
which is just the union bound to the average probability of bit
error. As the error events are uncorrelated in the long term
then the bound must be reasonably tight for large N f . It is

remarkable that both the bound (12) and the exact expres-
sion (13) are independent of Q(m), and then both of the type
of window used and of the band m. Then, the union bound
is upperbounded by (12) for generic stationary Gaussian sig-
nals, and exactly given by (13) for i.i.d. Gaussian signals.

4. EXPERIMENTAL RESULTS

Fig. 2 shows the upper bounds using (12) and (13) compared
to empirical data. The parameters used are the original ones
in Philips method, but with shorter frames for computational
reasons. The two correlated cases correspond to the M ×M
tridiagonal covariances Z+ = σ2

x tridiag(1
4 , 1,

1
4 ) and Z− =

σ2
x tridiag(− 1

4 , 1,− 1
4 ), which have the same minimum eigen-

value and, consequently, the same upper bound. This illus-
trates the fact that the sharpness of the union bound depends
on the particular Z present. We will also see next that (12)
may be loose if the minimum eigenvalue of Z is too small.

We examine now the validity of our Gaussian analysis for
real audio signals. Our analysis is for averages over the en-
semble of signals with a given Gaussian distribution, whereas
audio signals are particular realizations. So, averages (and
stationarity) will have to be interpreted in an ergodic sense.
Also, neither real audio signals are Gaussian nor stationary.
The rst issue will be an inevitable source of inaccuracy. With
respect to the second issue, it is possible to approximate au-
dio signals by locally stationary stretches. For each frame n
we will have a possibly different autocovariance matrix Zn,
and Pr[εn(m)] will depend now on n unlike in the station-
ary case. Then, prediction for real signals will require the
estimation of the (positive de nite) autocovariance matrices
corresponding to each locally stationary stretch. We present
in Fig. 3 the results for 5-second excerpts of three real audio
signals used in [2]: “O Fortuna” by Carl Orff, “Say what you
want” by Texas, and “Whole lotta Rosie” by AC/DC (16 bits,
44.1 kHz). The theoretical plots in Fig. 3 have been obtained
using (11) and (14), as (12) turned out to be too loose. The
estimation interval lengths (Ta) are given in the plot. The use
of (11) limits the applicability of the theoretical predictions to
small frames, due to the matrix multiplication involved; nev-
ertheless, the good t of the theoretical results encourages the
future development of more practical approximations to that
expression. The results also show that the SNR alone does
not suf ce to predict performance for real signals.

A. APPENDIX

As arctan(·) is strictly increasing, a bound on (11) can be
obtained by bounding the argument ψ inside the square root:

ψ �
(vec Q(m))T

(
(2Z̄ + I)⊗ I

)
vecQ(m)

(vec Q(m))T (Z̄⊗ Z̄) vecQ(m)
, (15)

applying tr ABCD = (vecD)T A ⊗ CT vecBT [11]. The
operator vec(·) stacks the columns of an M ×M matrix to
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three real audio signals. Frame size 0.05 seconds.

form an M 2 × 1 vector. As Z̄ is symmetric positive de nite,
assuming full rank all its eigenvalues are strictly positive, and
it can be decomposed as Z̄ = WT W for some square matrix
W. Applying elementary properties of the Kronecker product
we have that Z̄⊗ Z̄ = (W⊗W)T (W⊗W), and de ning next
v � (W ⊗W)vec Q(m) we can rewrite (15) as

ψ =
vT

(
(2I + Z̄−1)⊗ Z̄−1

)
v

‖v‖2 . (16)

Now, this is a Rayleigh quotient [11] which is upperbounded
for any v �= 0 by the maximum eigenvalue of the matrix in
the numerator of (16). This is in turn upperbounded as

ψ ≤ (
2 + λ−1

1 (Z̄)
)
λ−1

1 (Z̄),

applying: a) the eigenvalues of a Kronecker product are the
products of the eigenvalues of the matrices in the product,

which only have positive eigenvalues; b) for any two sym-
metric M × M matrices A and B it holds λM (A + B) ≤
λM (A) + λM (B) [11]; and c) the (positive) eigenvalues of
Z−1 are the inverses of the eigenvalues of Z. If we de ne next
γu � λ−1

1 (Z)σ2
x then we can write

ψ ≤
(

2 +
γu

ξ

)
γu

ξ
.
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