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ABSTRACT

This paper proposes improvements to the Code Division Modula-
tion and Multiplexing (CDM) spread spectrum watermarking. The
improved CDM technique exploits all the available information at
the embedder and determines the required energy for the spreading
sequences to achieve a speci ed bit error probability. This approach
considers an additive noise in the channel and all the interferences
from the host signal, cross-correlation between spreading sequences,
perceptual masking and interferences from collusion attacks. We
provide results to illustrate the improvements achieved and also com-
parisons with traditional CDM watermarking.

Index Terms— Data hiding, digital watermarking, Spread spec-
trum watermarking.

1. INTRODUCTION

Code Division Modulation and Multiplexing (CDM) has been widely
employed for watermarking embedding in both the spatial and fre-
quency domains [1–3]. By spreading the information over the cho-
sen domain, CDM can help to provide secure embedding with ro-
bustness to non-malicious attacks such as compression, ltering, equal-
ization and A/D and D/A conversions, as well as to tampering attacks
[1, 4–6]. CDM-based embedding can be made robust to geometric
operations such as rotation, cropping and scaling by employing a
pre-processing tailored to the speci c attack [5, 7]. The computa-
tional complexity required for detection is linear (O(N) for embed-
ding N bits). In contrast, techniques such as basic message cod-
ing and orthogonal modulation [6] have computational complexities
of O(2N ) required for detections, pattern generation and storage of
these patterns. On the other hand, the perceptual impact of CDM
embedding on the host signal increases with the number of bits em-
bedded. This impact can be mitigated by using perceptual masking
[8, 9], M-ary modulation [10] (which increases the detection com-
plexity) or by embedding in transformed domains [1, 2].

Many approaches in the literature propose to embed the water-
mark into reduced length sequences [11]. Unfortunately, however,
short sequences produced by pseudo random generators tend to be
highly cross-correlated. The degrading effect of cross-correlated se-
quences on the CDM detector performance becomes specially im-
portant in applications that require small bit error rates (BER), as
we illustrate in Section 4.

In this paper we address the design of CDM watermarking sys-
tems which are also robust to collusion attacks. Depending on the
number of colluders involved, such attacks can considerably reduce
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the energy of the embedded watermarks, hence degrading the detec-
tion performance and improving the delity of the resulting illegal
copy [12]. The improved CDM watermarking is based on the in-
formed multi-bit approach proposed in [9], but provides robustness
to collusion attacks [13]. Similarly to [9], it also compensates for
interferences from the host signal, perceptual masking and cross-
correlation between spreading sequences.

2. IMPROVED INFORMED EMBEDDING

Consider a channel subject to additive noise and collusion attacks.
Assume that T watermarked signals of the same Work are to be dis-
tributed to T users. The Work is represented by co, and the water-
marked copies by ci = co + wi, i = 1, . . . , T , where wi is the
watermark used for the i-th user. Using CDM, NT spreading se-
quences p(i)

j , i = 1, . . . , T , j = 1, . . . , N , are required to embed
a unique N -bit message for each of the T users. Each spreading
sequence p(i)

j hasM samples, which are assumed to have zero aver-
age. These sequences are usually created by using a pseudo random
generator. The colluded watermark w can be expressed as [9, 12]:

w =
1

T

TX
i=1
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1

T
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i=1

NX
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(i)
j b
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(i)
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In (1), x is the perceptual shaping mask vector [9] and the operator
∗ represents element-by-element vector multiplication. The coef -
cients b(i)j are the antipodal bits that carry the watermark informa-

tion; p(i)
j is the spreading sequence associated with the j-th infor-

mation bit that is used for the i-th user. The factor α(i)
j controls the

energy of the sequence p
(i)
j . In traditional CDM, α(i)

j is a constant
α, ∀i, j, used to adjust the total energy of the watermark. Our ap-
proach, based on [9], is to adjust each sequence individually by de-
termining each factor α(i)

j in order to mitigate the interferences from
host, sequences crosscorrelation, perceptual masking and collusion.
We expand the work proposed in [9], by considering collusion at-
tacks.

The watermarked signal cW obtained after collusion of T users
is received by the detector as cW = co + w. Notice that we are
disregarding for the moment any channel noise generated by the col-
luders or already existing in the signal path. The channel noise will
be considered in Section 3.

The detection of the �-th message bit is done by linear correla-
tion. In the absence of noise and after collusion of T copies of the
Work, the detection statistics d(k)� of the �-th message bit for the k-th
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user is given by:
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where the average vector s̄ of a vector s with elements sk, k =

1, . . . ,M is given by s̄ =
“

1
M

PM

k=1 sk

”
1M , where 1M is an

M×1 vector of ones. 〈s, r〉 = 1
M

PM

k=1 skrk is the zero-lag cross-
correlation1 of the two sequences {sk} and {rk} composed of the

elements of vectors s and r, respectively. r(k)� =
D
p
(k)
� , co − c̄W

E
contains the host signal interference at the detection, where c̄W =
c̄o + w̄. Notice that the non-blind detection approach is a special

case of our model when r(k)� =
D
p
(k)
� ,−w̄

E
.

Let d̂(k)� = βb
(k)
� be the speci ed decision level at the detector.

Then, the detection mismatch between the desired and achieved de-
tection levels for bit � and user k is given by ek,l = d̂

(k)
� − d(k)� , and

the total squared detection error is de ned as ξ =
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where q(i,k)j,� =
D
p
(i)
j ∗ x,p(k)

�

E
. The double sums in (3) can be

simpli ed to single sums by the changes of variablem = (j−1)T+i
and n = (�− 1)T + k, yielding2
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where d̃n = d̂
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t andΨ is anNT ×NT matrix with elements ψm,n.

De ning the vectors d̃ = [d̃1, . . . , d̃NT ]
t and r̃ = [r̃1, . . . , r̃NT ]

t,
(4) can be written as a vector inner product:
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The vector φ that minimizes ξ for a given desired detection level
d̂
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1Note that in this paper 〈s,r〉 corresponds to a normalized inner product
of vectors s and r.

2These changes of variables change matrices into column vectors and the

fourth-dimensional array with elements q
(i,k)
j,�

into a matrix with elements
ψm,n.

Assuming that Ψ has full rank,

φ = TM(Ψt)−1
g (8)

where g = d̃ − 1
M
r̃. It is easy to verify that φ given by (8) leads to

ξ = 0 and thus to d(k)� = d̂
(k)
� = βb

(k)
� .

Now consider anM × 1 additive vector channel noise η, whose
elements are drawn from a zero-mean independent, identically dis-
tributed (iid) noise process with even probability density function
(pdf). For a sequence embedding using the factors α̃m determined
from (6), the resulting detection levels will be:

d
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In terms of index n,

dn = βbn + vn (10)

where vn =
D
p
(k)
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E
, dn = d

(k)
� and bn = b

(k)
� with n = (� −

1)T + k. Note that vn models the additive noise interference.

3. DETERMINING β FOR ADDITIVE WHITE NOISE η

In the following, we estimate the parameter β to attain a given spec-
i ed bit error probability Pe in the noisy case. Recall that using φ

obtained from (8) and the notation in (10), dn = d̃n = βbn for the
noiseless case. Comparing this expression with (10), a detection er-
ror occurs when: a) bn = 1 and dn = β + vn ≤ 0; b) bn = −1
and dn = −β + vn ≥ 0. Thus, the resulting error probability Pen
for bit3 n is given by Pen = Pr{vn ≥ β|bn = −1} + Pr{vn ≤
−β|bn = 1}. Assuming that the message bits are independent of
the noise source,

Pen = Pr{vn ≥ β}Pr{bn = −1}+ Pr{vn ≤ −β}Pr{bn = 1} (11)

To determine the value of β necessary to achieve a speci ed
Pen , we need to calculate the statistics of vn. Since the spread-
ing sequence p(k)

� is statistically independent of the zero-mean noise
vector η, E [vn] = 0, where E [·] stands for statistical expectation.
To determine the variance of vn we rst de ne p(k)� (m) as them-th

binary pattern in the spread sequence p
(k)
� , with m = 1, . . . ,M ,

and η(m) as the m-th element of vector η. Then, assuming that
p
(k)
� (m) ∈ {−P, P} and using the property E[ηiηj ] = 0 for i 	= j,
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Now, since we have assumed η(m) to be white and with even
pdf, vn is a sum of independent random variables with even pdfs
and thus has an even pdf itself which tends to a Gaussian for M
large. Hence, Pr{vn ≥ β} = Pr{vn ≤ −β}. Using this property in
(11) and the fact that Pr{bn = 1}+ Pr{bn = −1} = 1 yields

Pen = Pr{vn ≥ β} (13)

3Here, bit n is a simpli ed terminology to refer to bit � of the information
sent to user k, where n = (� − 1)T + k.
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Finally, σ2
v in (12) is not dependent on the bit value bn or on the

speci c binary patterns p(k)� (m). Thus, Pen in (13) is equal to the
average probability of error Pe.

Assuming vn to be zero-mean Gaussian, (13) yields

Pe =
1√
2σv

Z ∞
β

e
− t

2

2σ2
v dt =

1

2
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„
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«
(14)

where erfc(x) = 2√
π

R∞
x
e−t

2

dt is the complementary error func-
tion.

Hence, the value of β required to achieve a speci ed bit error
rate Pe can be determined from:

β =
√

2σv erfc−1(2Pe) (15)

with σ2
v given by (12).

Note that it is not dif cult to estimate the noise power σ2
η for

most applications. This power can also be related to the maximum
distortion power the watermarking system should survive to. Thus,
given an acceptable probability of error Pe and an estimate of the
channel noise power, (15) can be used to determine the value of β
required to compensate for the noise correlation. Then, using this
value of β to determine the vector d̃ from d̂

(k)
� = βb

(k)
� , (8) leads

to the vector φ of factors α(i)
j to be employed in (1). For instance,

Pe = 0.0013 requires β = 3σv = 3 P√
M
ση , while Pe = 0.1587

requires β = σv = P√
M
ση .

In the absence of noise, the most transparent embedding requires
β = 0. In practice, however, β cannot be too small due to round-
off and clipping effects. Under noisy conditions, transparency will
be limited by the noise variance, by the amount of host interfer-
ence, by the number of users in collusion, by the cross-correlations
between different spread sequences and by perceptual mask inter-
ferences. In both the noiseless and noisy cases, the proposed em-
bedding approach provides the required embedding energy for the
sequences given a speci ed bit error probability and the noise vari-
ance. Perceptual transparency is considerably improved by using a
proper shaping mask x. Notice that the mask interferences are also
compensated by our approach. The compensation of these interfer-
ences is required to achieve the speci ed Pe since they affect the
orthogonality of different spread sequences.

4. EXPERIMENTS

In order to verify the accuracy of the design equation (15) for β,
we realized experiments with speci ed Pe1 = 0.0013 and Pe2 =
0.1587, and for several values of noise power σ2

η . In these experi-
ments we used N = 40 (insertion of 40 bits) and T = 5 (5 users,
all of them colluding). The resulting bit error rates shown in Ta-
ble 1 were obtained from Monte Carlo simulations with 300 realiza-
tions. These results indicate that we are properly compensating for
the aforementioned interferences and properly setting the strength
factor of the sequences to achieve the speci ed performance.

To illustrate the degrading effects of sequence cross-correlations
on the detection performance we made T = 1 (no collusion attacks)
and compared the performances obtained using the proposed and the
traditional CDM embeddings [5]. Orthogonality among sequences
is assumed by most spread spectrum based embedders in the litera-
ture. However, orthogonality rarely occurs in practice due to resid-
ual cross-correlations existing in sequences generated by practical
pseudo-random generators or due to perceptual masking. The re-
sults (for T = 1) are shown in Figs. 1 and 2. Fig. 1 illustrates the

effects of Pe and the image size. Images of sizes 16 × 16, 64 × 64
and 128 × 128 were used. For the traditional CDM, these cases are
labelled SS16, SS64 and SS128, respectively. The sequence length
M is equal to the number of image pixels. The label “Prop” refers to
the proposed technique. In all cases,N = 10, ση = 64. The signal-
to-watermark ratio is kept the same for both competing techniques
by adjusting the energy of the sequences used in the traditional CDM
technique. Pe is the speci ed (or desired) bit error probability. No-
tice from Fig. 1 that the BER performance of the traditional approach
depends on the value of Pe and on the sequence length M . The
improved performance of the traditional approach as M increases
is due to the reduction of the sequence cross-correlations for larger
spreading sequences. The performance of the proposed approach is
clearly independent of these parameters. Fig. 2 illustrates the ef-
fect of the noise power on the detection performance. This gure
was generated for M = 64 × 64, N = 10, Pe = 3.17 × 10−5

and the signal-to-watermark ratio (SWR) was kept the same for both
techniques. Once again, the proposed technique leads to a perfor-
mance that is independent of the noise power (provided it can be
estimated). In Fig. 3 we consider a variable number of users in col-
lusion, namely, T = 10, 20 and 40 users. It can be veri ed that the
proposed approach provides a signi cantly better embedding than
the traditional approach.

In general, the experiments show that the improvement over the
traditional CDM is more signi cant for larger number of users T ,
smaller Pe, smaller sizes M , smaller noise deviation ση and larger
number of bits N . We did not employ any perceptual masking in
these examples, which would tend to improve the performance of the
proposed technique, as compared to traditional CDM embedding.

Regarding the necessary resources, the proposed CDM improve-
ment requires the solution of (7) at the embedding. It also requires
an amount of memory proportional to the number of bits N , to the
number of users T and to the host signal size M . Thus, in general,
the approach may be limited to hundreds of users and few bits per
user due to memory limitations. A numerically optimized routine to
solve (7) may signi cantly alleviate this limitation. Regarding de-
tection, the proposed method presents the same order of complexity
as the traditional CDM spread spectrum technique, namely, O(N).

Table 1. Monte Carlo simulations (300 realizations each) for speci-
ed Pe1 = 0.0013, Pe2 = 0.1587 and various ση . M = 144 × 95,
N = 40 and T = 5. BER are given by the number of errors divided
by 40× 5× 300.

Pe1 = 0.0013 Pe2 = 0.1587

ση BER BER
5 0.001417 0.1592
10 0.001317 0.1594
21 0.001233 0.1588
43 0.001234 0.1571

5. CONCLUSIONS

We proposed improvements to CDM spread spectrum by compensat-
ing for the host interference, collusion attack, cross-correlation of the
spreading sequences and perceptual masking interferences. The new
approach enforces a speci ed robustness, expressed as error proba-
bility, to additive noise in the channel for a given number of users
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Fig. 1. BER performance as a function of the speci ed Pe and the
sequence length M . T = 1, N = 10, ση = 64 and the signal-to-
watermark-ratio is kept the same for both approaches.
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Fig. 2. BER performance as a function of the noise deviation ση .
M = 64 × 64, T = 1, N = 10, Pe = 3.17E − 05.

working in a collusion to defeat the watermarking system. Experi-
ments were provided which verify the accuracy of the analysis and
the performance when compared to traditional CDM embedding.
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