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ABSTRACT
Digital ngerprinting is an emerging tool to protect multi-
media content from unauthorized distribution by embedding
a unique ngerprint into each user’s copy. Although several
ngerprinting schemes have been proposed in related work,

disproportional effort has been targeted towards identify-
ing effective collusion attacks on ngerprinting schemes.
Recent introduction of the gradient attack has re ned the
de nition of an optimal attack and demonstrated strong ef-
fect on direct-sequence, uniformly distributed, and Gaus-
sian spread spectrum ngerprints when applied to synthetic
signals. In this paper, we apply the gradient attack on an ex-
isting well-engineered video ngerprinting scheme, re ne
the attack procedure, and demonstrate that the gradient at-
tack is effective on Laplace ngerprints. Finally, we explore
an improvement on ngerprint design to thwart the gradient
attack. Results suggest that Laplace ngerprint should be
avoided. However, we show that a signal mixed of Laplace
and Gaussian ngerprints may serve as a design strategy to
disable the gradient attack and force pirates into averaging
as a form of adversary collusion.

Index Terms– Multimedia ngerprinting, collusion re-
sistance, gradient attack.

1. INTRODUCTION

Signi cantly increased levels of multimedia piracy over the
last decade have put the movie and music industry under
pressure to deploy a standard anti-piracy technology. In a
typical scenario that uses multimedia marking for forensic
purposes, studios create a uniquely marked content copy for
each individual user request. User-speci c distinct water-
marks are commonly denoted as ngerprints. The nger-
printed copy is securely distributed to the user who plays
the content using a media player which is unmodi ed com-
pared to modern media players. Certain users may chose to
illegally distribute this content. To address this problem, the
media studios deploy search robots in order to nd content
copies on the Internet. Illegally distributed content is re-
trieved and based upon the known user database as well as
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the original clip, media studios use forensic analysis tools
to identify the pirates.

A major problem for ngerprinting systems is the collu-
sion attack. To launch such an attack, an adversarial group
of malicious users colludes their copies in order to create
a copy which is statistically clean of any ngerprint traces
(e.g., the original) or a copy that incriminates another in-
nocent user. Various collusion attacks have been studied
in literature [1]. Results show that a number of non-linear
collusion attacks based on order statistics can be well mod-
elled by collusion via averaging plus an additive noise un-
der Gaussian ngerprint construction. Recent introduction
of the gradient attack [2] showed that a new class of attacks
could be built by deploying two instead of one estimate of
the original signal. If one estimate is provably and possible
probabilistically better than the other, the gradient attack
identi es an attack vector that is key to reducing the ex-
pected correlation between any ngerprint and the attacked
copy to zero. To date, the gradient attack has been examined
on direct-sequence, uniform, and Gaussian ngerprints and
synthetic signals. In this paper, we examine the effective-
ness of the gradient attack on a video ngerprinting scheme
proposed in [3, 4], and found that it is very effective. We
also found that, due to the underlying Laplace ngerprints,
the observed order of the estimates used for the gradient
attack is exactly opposite to what has been shown on Gaus-
sian ngerprints. Based on this observation, we propose a
ngerprint construction combining these two distributions

that improves the robustness to gradient attack.

2. A VIDEO FINGERPRINTING SCHEME

The video ngerprinting scheme that is examined in this pa-
per is proposed in [3, 4]. It marks the content by designing a
content-adaptive watermark signal via solving an optimiza-
tion problem. The ngerprint is embedded into the DC band
of the DWT (Discrete Wavelet Transform) domain. The al-
gorithm packs these coef cients into a 3D cuboid x, where
the third dimension represents the frame index. Based upon
a unique user key, the ngerprint embedding algorithm se-
lects pseudo-randomly, in terms of positions and sizes, a
collection of sub-cuboids P = {p1, . . . ,pn} ⊂ x that may
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Fig. 1. Illustration of the gradient attack. The dotted line
depicts the bound of imperceptive noise.

overlap. Then, the coef cients in each sub-cuboid pj ∈ P

are weighted using a smooth weighting cuboid uj . The
weighting cuboids are generated pseudo-randomly using a
user-speci c secret key. Finally, the algorithm computes the
feature vector g = [g1, ..., gn] of the host signal with gj as
the mean value of pj ·uj . The embedding process quantizes
the feature using a private quantizer q(g) to get the feature
vector ĝ of the ngerprinted signal. The equivalent nger-
print in the feature domain would be ĝ− g, which is spread
among the pixels of the containing cuboid in such a way that
the introduced distortion is minimized.

Given a received video signal z, the detector extracts the
feature vector gz in the same way as the embedding process
using a suspect user’s key. The extracted test ngerprint
in the feature domain would be gz − g. It then employs
a correlation based detection to identify the existence of a
watermark as follows:

γ =
(gz − g) · (ĝ − g)

||ĝ − g||2 ≶ T, (1)

If γ is greater than a certain threshold T , the detector con-
cludes that z is marked with the ngerprint generated using
the suspect user key; otherwise, no ngerprint is detected.

3. THE GRADIENT ATTACK

Traditional collusion attacks considered in literatures esti-
mate the original content in order to remove the traces of
each participant [1]. As estimates get closer to the original,
the detection statistic for each participant, usually the cor-
relation of the colluded signal with each user’s ngerprint,
becomes lower. In the gradient attack, instead of estimating
the original, attackers try to nd a spot in the perceptively
similar neighborhood of the original, that is expected to be
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Fig. 2. Colluding video ngerprints: detection statistic γ
vs. number of colluders K under averaging, min-max and
median attacks.

orthogonal to the ngerprints of all colluders. This is indeed
the paramount objective in attacking ngerprinting systems.

In a ngerprinting system, user i’s copy y(i) is gener-
ated as y(i) = x + w(i) with x being the original signal
and w(i) being user i’s ngerprint sequence. The marked
copies for users correspond to different points in the multi-
dimension space as shown in Fig. 1. To launch a gradient
attack, a collusion group {1, ...,K} designs two attacks on
their ngerprinted copies, with one yielding always a better
expected estimate z′′ of the original content than the other
one z′. Signals z′ and z′′ can be obtained via averaging
or median attacks as examined in [1]. These two attacks
identify a direction z′′ − z′ in the space opposite to the di-
rection of all ngerprints in the collusion group. The adver-
sary can move the estimate z′′ along this direction to a point
z in which every colluder’s ngerprint is mostly removed.
That is, E[d(z − x,w(i))] ≈ 0 for each participant, where
d(z − x,w(i)) is the corresponding detection statistic for
user i. Note that colluders also have to maintain the visual
quality of the attack signal, which imposes a maximum en-
ergy constraint on the gradient attack, shown as an arc in
Fig. 1.

Mathematically, the gradient attack is de ned as: z =
z′′−β(z′−z′′), where β is such that E[c(z−x,w(i))] ≈ 0
for each user i in the collusion group K and the pirated vec-
tor is perceptually close to the original so that ||z − x|| ≤
δ
√

N . Hence, the value of β that can be applied in the gra-
dient attack satis es:

β ≤ −σ2
m + c +

√
(σ2

m − c)2 − (σ2
m − δ2)(σ2

m + σ2
a − 2c)

σ2
m + σ2

a − 2c

where σ2
a and σ2

m are the variances of z′ and z′′ respectively,
and c is the covariance between z′ and z′′.
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Fig. 3. Histogram of equivalent ngerprints of the video
ngerprinting scheme along with the Gaussian and Laplace

approximation.

3.1. Estimating Fingerprints

To apply the gradient attack onto the target video nger-
prints, we rst nd two estimates of the original content in
which one is always better than the other. In this paper, we
start with three attacks in the pixel domain, namely, aver-
aging, min-max and median attack. For a colluder group
Sc, the averaging attack generates zAV G = 1

K

∑
i∈Sc

y(i);
the min-max attack generates zMM = 1

2 (mini∈Sc
y(i) +

maxi∈Sc
y(i)); and the median attack generates zMed =

mediani∈Sc
y(i). The means of the detection statistics for

colluders under these three attacks are shown in Fig. 2. We
can see that the median attack yields an estimate that has the
smallest detection statistic, while min-max has the largest
detection statistic for all examined collusion sizes. Thus,
we have the order of Min-Max > Averaging > Median in
terms of the detection statistic, which is exactly opposite
to the case with Gaussian ngerprints reported in [5]. This
inspired us to examine the underlying distribution of the n-
gerprints in the examined video ngerprinting system.

3.2. Laplace Approximation

We extract the equivalent ngerprint of the video nger-
printing system in the pixel domain and plot the histogram
in Fig.3 along with the approximation using Gaussian and
Laplace distribution. We see that the equivalent ngerprint
can be well approximated by Laplace distribution rather than
Gaussian distribution. Based on this observation, we model
the ngerprints to follow a zero-mean bounded Laplacian:

f(x) =

{
exp(−|x|/b)

2b[F (δ)−F (−δ)] , |x| ≤ δ,

0, otherwise
(2)

where F () is the c.d.f. of an unbounded zero-mean Laplace
distribution with parameter b. We denote this distribution as
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Fig. 4. Analytical results on Laplace ngerprints under av-
eraging, min-max and median attacks.

L̄(b, δ). The variance of the bounded Laplace distribution
is:

σ2
w =

2b2 − [(δ + b)2 + b2] exp(−δ/b)
1− exp(−δ/b)

. (3)

With this model, we are able to derive the expected cor-
relation kernel E[z · wi] as an indicator of the detection
statistic γ. Then we numerically evaluate E[z ·wi] for three
attacks, and show the results in Fig. 4. We can see that
the analytical results of the correlation kernel for three at-
tacks are consistent with the simulation results, which fur-
ther demonstrates that the underlying ngerprints are Lapla-
cian.

3.3. Experimental Results

As seen from Fig. 2, the Median attack generates a copy
that always has a smaller detection statistic than the Min-
Max attack. Thus, we choose zMM as z′ and zMed as z′′ to
apply the gradient attack on the target video ngerprinting
scheme. For simplicity, β is set at 3 to keep the visual qual-
ity acceptable. After the gradient attack, the average PSNR
of the attack video frames is about 37dB. Fig. 5 shows the
detection results after the gradient attack. We can see that
the expected detection statistic for colluders is signi cantly
reduced and with the current visual quality of the colluded
content, only K = 8 colluders are able to defeat the system
regardless of object size. The results suggest that Laplacian
ngerprints are vulnerable to the gradient attack and should

be avoided in ngerprint design.

4. IMPROVED FINGERPRINT CONSTRUCTION

In this section, we discuss how to design ngerprints to im-
prove the collusion resistance against the gradient attack.
We observe that the order of the detection statistics under
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Fig. 5. Detection statistic γ of the video ngerprinting [3]
vs. number of colluders K under gradient attack.

the three considered attacks are exactly opposite for Gaus-
sian and Laplace ngerprints. Note that the effectiveness
of the gradient attack comes from the gap between the two
estimates z′ and z′′ or the direction pointed by z′ − z′′. If
we can reduce or eliminate the gap, the gradient attack will
be less effective. To achieve this, we propose to combine
Gaussian and Laplacian ngerprints. As a preliminary ex-
ploration, we linearly combine ngerprints generated from
these two distributions to get each user’s ngerprint. For
each user i, we generate two sequences: w(i)

1 following the

Laplace distribution and w(i)
2 following the Gaussian dis-

tribution. The nal ngerprint sequence w(i) for user i is
obtained as:

w(i) =
√

qw(i)
1 +

√
1− qw(i)

2 . (4)

where q is a parameter to adjust the weight for sequences
w(i)

1 and w(i)
2 .

We examine the performance of the combined nger-
printing through simulation. We choose δ = 7 and σ2

w =
4.7 for both distributions. Combination parameter q is set
to be 0.1. With this parameter settings, we choose z′′ to
be the signal by the Min-Max attack and z′ the signal ob-
tained by the median attack. β is chosen such that the dis-
tortion introduced by the collusion attack is comparable to
that by ngerprint embedding. We measure the probability
of catching all colluders Pd given the probability of a false
alarm to be no higher than 10−6. Fig. 6 shows the results
for Laplace, Gaussian and combined ngerprints. Since we
measure the probability of catching all the colluders, the
curves drop to zero quickly as K increases. From the re-
sults, we can see that the combined ngerprints offer sig-
ni cant improvement in Pd over Laplace ngerprints and
around 10% increase over Gaussian ngerprints. Although
the improvement over Gaussian ngerprints is limited, the
results on the simple linear summation suggest the poten-
tial of combining two distributions for ngerprint construc-
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Fig. 6. Experimental results on combined ngerprints under
the gradient attack.

tion. We believe other combination approaches, such as in-
terleaving sequences from two distributions, could lead to
better performance. How to combine and where to put se-
quence from which distribution to achieve the highest collu-
sion resistance are open problems, which we plan to explore
in our future work.

5. CONCLUSION
In this paper, we have examined the effectiveness of the gra-
dient attack on an existing video ngerprinting scheme. The
results show that the video ngerprinting scheme is vulnera-
ble to the gradient attack, whereby as few as 8 colluders are
able to defeat the system regardless of object size. The vul-
nerability comes from the Laplace distribution of the nger-
prints, which suggests that one should avoid using Laplace
distribution in ngerprint design. We explored a counter-
measure for ngerprint construction against the gradient at-
tack by combing Gaussian and Laplace distributions. Re-
sults suggest great potential for the new breed of mixed-
distribution ngerprints.
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