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ABSTRACT

This paper analyzes the performance of arbitrary nonlinear collu-

sion attacks on random fingerprinting codes. We derive the error

exponent of the fingerprinting system, which determines the expo-

nential decay of the error probability. A Gaussian ensemble and an

expurgated Gaussian ensemble of codes are considered. The collu-

sion attacks include order-statistics attacks as special cases. In our

model, a correlation detector is used. The colluders create a noise-

free forgery by applying an arbitrary nonlinear mapping to their indi-

vidual copies, and next they add a Gaussian noise sequence to form

the final forgery. The colluders are subject to a mean-squared distor-

tion constraint between host and forgery. We prove that the uniform

linear averaging attack outperforms all others.

Index Terms: Digital fingerprinting, coding, detection

performance, nonlinear signal processing.

1. INTRODUCTION

Digital fingerprinting systems can be used for traitor tracing

or digital rights management applications. A length-
�

real-

valued signal is to be protected and distributed to � users.

Some of the users ( � of them) may collude and process their

copies to create a forgery that contains only weak traces of

their fingerprints. This problem was first posed by Cox et al.
[1] who proposed the use of Gaussian fingerprints for this

purpose. Specifically, their fingerprints were drawn randomly

from an i.i.d. Gaussian distribution; the fingerprint code is

shared with the detector but not revealed to the users.

A fundamental question is what are the optimal perfor-

mance limits for detection of colluders. To make the problem

nontrivial, one may assume embedding distortion constraints

on the fingerprinter and the colluders. Example of this anal-

ysis include [2, 3] for the case of signals defined over finite

alphabets, and [4, 5, 6] for the case of real-valued signals. In

the latter case, an obvious (but not necessarily optimal) strat-

egy for the colluders is to perform a uniform linear average of

their copies and add i.i.d. Gaussian noise; this strategy was

examined in the above papers. Possible improvements for the

attackers consist of developing (nonlinear) order-statistics at-

tacks, as proposed by Stone [7]. Computer simulation results
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for seven order-statistics collusion attacks have been reported

in [7, 8, 9], sometimes with conflicting findings.

Our study aims at developing a comprehensive detection-

theoretic analysis of collusion attacks and identifying an opti-

mal strategy for the colluders. The analysis is rooted in large-

deviations theory. Initial results were reported in [10] for the

class of order-statistics attacks, assuming a correlation detec-

tor and constraining the mean-squared distance between the

host and the forgery. Under those assumptions, we proved

that the uniform linear averaging strategy is optimal for the

colluders in the class of order-statistics attacks. The analy-

sis is extended in this paper to a broader class of nonlinear

attacks.

In our problem setup, two random ensembles of finger-

printing codes are considered. The first one is the same as the

one used by Cox [1] and other researchers and is shown to be

less performant than the second one, which is an expurgated

ensemble (bad codes are eliminated). The detector has access

to a forgery as well as to the host signal (nonblind detection)

and performs a binary hypothesis test on each user to deter-

mine whether that user was involved in the forgery. The cost

functions in this problem are the detector’s type-I and type-II

probabilities of error, which the colluders want to maximize.

Throughout this paper, we use boldface uppercase letters

to denote random vectors, uppercase letters for the compo-

nents of the vectors, and calligraphic fonts for sets. We use the

symbol � to denote mathematical expectation. For any collec-

tion of samples � � � � 	 	 	 � � 
 � , we denote by � � 
 � � � � � �� � the restriction of this collection to its elements � � �
.

The symbols � � � � � � � � �
and � � � � � � � � �

(asymptotic

equality) mean that � � � � � � �  � !"  � ! 
 # and � � � � � � �  � !"  � ! 
$
, respectively. The symbol � � � � 	
 � � � �

denotes asymp-

totic equality on the exponential scale: � % � � � � � � % � � � �
.

Of course, one may have � � � � � � � � �
and � � � � 	
 � � � �

simultaneously. The Gaussian distribution with mean zero

and variance & ' is denoted by ( � # � & ' �
.

2. PROBLEM STATEMENT

The mathematical setup of the problem is diagrammed in Fig. 1.
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Fig. 1. The fingerprinting process and the attack channel.

2.1. Fingerprint Generation and Embedding

The host signal is a sequence �  ! " ! # $ % & & & % " ! ' $ $
in ( )

,

viewed as deterministic but unknown to the colluders. Fin-

gerprints are added to � , and the marked copies of the signal

are distributed to * users. Specifically, user + is assigned a

marked copy , -  � . / - where + 0 1 # % & & & % * 2 and/ - 0 ( )
is the fingerprint assigned to user + .

The fingerprints / 3 % 4 4 4 % / 5 form a ! ' % * $
fingerprint-

ing code 6 . The code 6 is selected independently of � from a

random ensemble of codes, 7 , such that

8 9 : ; , - < � ; = >  8 9 : ; / - ; = >  ' ? @ % A + %
i.e., the expected mean-squared distortion is equal to

? @
. The

random ensembles 7 of codes considered in this paper are

invariant to permutations of users ( + ) and samples ( B ).

2.2. Attack Model

The attacks are of the formC  D ) ! , E $ . F (1)

where
G

, the coalition, is the index set of the colluding users.

The coalition has cardinality H I * . Moreover the noise F
is i.i.d. J ! K % L =M $

and is independent of , E .

The mapping D ) N ( ) O E O P ( )
in (1) is symmetric in

its arguments, i.e., any permutation of the index set
G

does

not change the value of D ) . We view D ) as a “noise-free

forgery” to which noise F is added to form the actual forgery,C
. The symmetry requirement on D ) represents a fairness

condition: all members of the coalition incur equal risk. An-

other requirement is that D ) satisfy the separation condition

D ) ! , E $  D ) ! / E $ . � & (2)

An example is the order statistic attack

D ) ! , E $ ! B $  
QR

S T 3 U S V W S X ! B $ % # I B I ' % (3)

where V W S X ! B $
is the Y -th order statistic of the H -vector , E ! B $

,

and D ) is parameterized by the vector Z  1 U 3 % & & & % U Q 2 .

The fairness and separation conditions (1) and (2) are satisfied

provided that [ U S  #
and the sequence U S is symmetric.

The special case of U S \ # ] H reduces to the popular uniform
linear averaging attack,

,  D ) ! , E $  #
H

R
S ^ E , S &

If the attackers can retrieve the original signal � , they will

succeed in defeating the detector. It is therefore useful to viewD ) ! , E $
as an estimator of � based on the copies available to

the coalition
G

. The mean-squared distortion of the forgeryC
relative to � is given by

8 ; C < � ; =  ' ? _
(4)

where
? _

is the average distortion per sample introduced by

the coalition. Under the attack model (1) (2), we have

8 ; C < � ; =  8 9 : ; D ) ! / E $ ; = > . 8 ; F ; = %
and thus

? _ ` L =M . The difference

? _ < L =M  #' 8 9 : ; D ) ! / E $ ; = > (5)

represents the mean-squared estimation error. For the Gaus-

sian ensemble 7 , the mean-squared estimation error (5) is

minimized by the uniform linear averaging D ) . In this case,? _  L =M . ? @
H & (6)

2.3. Detector

We study the nonblind scenario where the host signal � is

available at the detector and can be subtracted from
C

, to

form the centered content
C < � . The detector performs a

binary hypothesis test to determine whether a specific user’s

mark is present. The detector knows neither the mapping D )
nor even the number of colluders H . When focused on user+ , our detector computes the correlation statistic a - ! C $

be-

low and compares it with a threshold b :

a - ! C $  / c- ! C < � $  / c- : D ) ! / E $ . F >
d 3 ! + $ef
d g ! + $ b

(7)

where
d 3 ! + $

and
d g ! + $

respectively denote the “guilty”

and “innocent” hypotheses. The threshold b trades off the

type-I and type-II probabilities of error. The detector assumes

an upper bound H h i j on H , and this is reflected in the choice

of b (see below).

The detector (7) does not know the mapping D ) used by

the colluders or even the exact number H of colluders. How-

ever the detector’s performance generally depends on these

quantities. For any given user + , the possible error events are

a false positive (incorrectly declaring the user to be guilty)

or a false negative (incorrectly declaring the user to be inno-

cent). For any fixed
G

, the corresponding type-I and type-II
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error probabilities are given by � � � � � � � � � 	 � 
 � � 
 � � � �� � � �� � � and � � � � � � � � � � 	 � 
 � � 
 � � � � � � � � � � ,
where the average is with respect to the random ensemble �
of codes and the noise � . By our invariance assumptions,

these probabilities are independent of � and
�

. The over-

all type-I and type-II error probabilities (worst case over all� � �
) are given by� � � � � � � 	 � 
 � � � �� � � �
 �� � � 
 � � � � � �

�  !� " # $ � � � � � � � � �
(8)� � � � � � � � 	 � 
 � � � �� � � �
 � � � 
 � � � � � �

�  ! � $ � � � � � � � � � �
(9)

where the upper bounds follow from the union bound. Detec-

tion is said to be reliable if (8) and (9) are small enough.

2.4. Background on Large Deviations

Consider a sequence of i.i.d. random variables % � & � � # �& � '
, drawn from a distribution ( ) with zero mean and

variance * +) . Denote by , ) � - � 	 . / 0 � 1 2 ) � the cumulant-

generating function for % . Recall that , ) � 3 � 	 , 4 ) � 3 � 	 3
and , 4 4) � 3 � 	 * +) . Of interest are limiting forms (as

' 5 6
)

of the probability

� 
 7 89: ; < % � & � � ' = > � 1 ? 8 @ AB C D E � F = � 3 (10)

where , G) � = � 	 H I J 2 K L � = - M , ) � - � �
is the large deviations

function associated with ( ) [11]. By Cramer’s theorem, the

upper bound (10) is tight in the exponent as
' 5 6

. If( ) 	 N � 3 � * +) �
, then , G) � = � 	 D O+ P OB . Moreover, for any ( ) :

, G) � = � Q = +R * +) � H = 5 3 � (11)

i.e., the exponent in (10) depends on ( ) only via * ) .

The upper bound (10) is an application of Markov’s in-

equality and remains valid if
=

itself is a function of
'

. When=
is small enough, specifically

= 	 ' ? < � + S where S T ' < � U
,

the Central Limit Theorem (CLT) applies, and we have a sharper

result, namely, the asymptotic equality

� 
 7 89: ; < % � & � � ' < � + S > Q V  S* ) $ W	 X � J Y M S +R * +) Z
where

V � [ � \ ] ^� � R � � ? < � + X � J _ M � + � R ` � � .

2.5. Memoryless Attacks

Lemma 1. For permutation-invariant � and the correlation

detector � 
 � � �
, there is no loss of optimality in restricting

the colluders’ strategies to memoryless mappings, i.e., to � 8

of the form � 8 � a � � 	 _ � � a � � # � � � b b b � � � a � � ' � � ` for

some � c d e 5 d .

Lemma 2. Any mapping � satisfying the fairness and

separation conditions (1) and (2) is of the form � � a � � 	� � � f � a � � " g � �a �
where � � � f � a � � 	 <e h i � � a i denotes

the uniform linear averaging mapping,
�a is the � -vector of

centered order statistics:
�a i 	 a C i E M a ,

# � j � � , andg c d e 5 d is an arbitrary mapping.

Example:
g � �a � 	 � <+ � �a 	C < E " �a 	C e E � 
 < � 	 for odd � � � .

Under the assumptions above, we define a compact set 

of feasible mappings � ; this set is is convex.

3. GAUSSIAN ENSEMBLE

Consider the Gausssian ensemble � , in which random codesk 	 _ l 
 � # � � � ! ` are obtained by drawing fingerprint

components � 
 � & �
i.i.d. N � 3 � m n �

. Define the five random

variables � L � o 	 � 
 � � � � � � � �� � ��
< � o 	 � 
 � � � � � � � � � �� 	 � 
 �% L � o 	

� L � o " �
% < � o 	

�
< � o " � W

By our assumptions on � and � , the distributions of these

random variables do not depend on � and
�

. In particular,� � � � � � 	 m n * +p . It may be shown that

0 �
� L � o � 	 0 � % L � o � 	 0 � � � 	 3 � 0 �

�
< � o � 	 0 � % < � o � 	 m n � � W

Finally, note that

� L � o ,

�
< � o ,

�
, % L � o and % < � o are non-

Gaussian, even if � 	 � � � f .

Proposition 1. Let 3 � � � 8 � �e � � � . For the Gaussian

ensemble � , we have

� � � � � � � � � � X � J � M ' , G) � � � � �'  !
� � � � � � � � � � � X � J Y M ' , G) " � �  m n� M �' $ Z W

Moreover these bounds are tight in the exponent as
' 5 6

.

Proof. The test statistic � 
 � � �
in (7) takes the form of a sum

of
'

i.i.d. random variables % L � o � & �
and % < � o � & �

under hy-

potheses
q L

and
q < , respectively. Therefore � � � � � � � � � 	� 
 � � 
 � � � � � � � �� � � and � � � � � � � � � � 	 � 
 � � 
 � � � �

� � � � � � satisfy the large-deviations bound (10). #
Proposition 2. In the limit as

' $ � r f s t � 5 6
,

we have the asymptotic equalities

, G) � � � � �'  Q � � � ' � +R � � � � � � 	 � � � ' � +R m n * +p � m nR * +p � +r f s �
, G) " � �  m n� M �' $ Q #R m n * +p  m n� M �' $ + � m nR * +p � +r f s W
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Proof. Recalling the range of � in Prop. 1, we see that the

arguments of the large-deviations functions � �� � � � and � �� � � �
above vanish as � � �

. The claim follows from (11). �
Prop. 1 states that the error exponents depend on the

nonlinear mapping � selected by the colluders, and therefore

detection performance strongly depends on � as
	 � �

.

However, as indicated by Prop. 2, that exponential depen-

dency vanishes for large � . For fixed values of � and
	

,

one can resort to numerical simulations [7, 8, 9]. However,

for fixed � , the Central Limit Theorem arguments advanced

in [8, 9] are not applicable as
	 � �

. We conclude this

section with Prop. 3 which establishes a fundamental rela-

tionship between
	

, 
 and � � � 
 , guaranteeing reliable de-

tection for the random ensemble � .

Proposition 3. For the Gaussian ensemble � , reliable

detection is guaranteed provided that � �� � 
 � � 
 � 	
.

Proof: follows from Props. 1, 2, and (8), (9).

4. EXPURGATED GAUSSIAN ENSEMBLE

The problem with the Gaussian ensemble � of Sec. 3 is that

error probability (which is obtained by averaging over all codes

in � ) may be dominated by bad codes. This is a standard

problem in information theory for the design of low-rate codes,

for which performance is dictated by minimum-distance con-

siderations, and the bad codes are the ones with poor mini-

mum distance [12]. Improvements can be obtained using ex-
purgation techniques, i.e., removing bad codes from the ran-

dom ensemble.

We apply a similar idea to our fingerprinting problem and

show that performance can indeed be improved for any finite� if we pick � judiciously rather than drawing it randomly

from � . The derivations are much more technical than the

ones given in Sec. 3 and will be presented elsewhere. The

basic ideas are sketched below.

Since the code � � � � � � is known to the detector, the

quantity � �� � � � � � �
in (7) may be viewed as a deterministic

functional of the unknown � rather than as a random variable.

The only source of randomness in � � � � �
is the Gaussian

noise � ��  which follows a ! � " # 	 $ % & �' �
distribution.

Choose a sequence � � � (
. Let ) � be the probability

that a code drawn from the iid Gaussian distribution satisfies

the conditions below for all * # +
, and let � be the ensemble

of such codes, which we call the expurgated ensemble.

, - . � � � � � / , � , � �� � � � � � � , 0 � � � $ 1 2 3 �% & 1 2' 4 * �5 +
(12)

, - . � � � � � / 6 	 $ % 7 � , 0 � � � $ 1 2 3 �% & 1 2' 4 * 5 + 8 (13)

We have proved that ) � tends to 1 as
	 � �

, provided

that � �� � 
 � � 
 � 	
. This suggests the following procedure

for selecting a code from � . Pick a code randomly from the

iid Gaussian ensemble and check whether this code satisfies

(12) and (13). If it does, use that code. If it does not, discard it

and repeat the above procedure until the it is successful. The

probability that the procedure is still unsuccessful after
9

trials

is only � ( 6 ) � � : .

Proposition 4. Assume " ; � ; � 	 
< � � 
 and � �� � 
 � � 
 �	
. For the expurgated ensemble � , the type-I and type-II

error probabilities satisfy

= > � � # + # * � ; ? @ � �& ' � ( 6 � � � A 8� B C D E 6 � �F & �' G # (14)

= > > � � # + # * � ; ? � (
& �' � � ( 6 � � � 	 $ %

� 6 � �
8� B C D � 6 (F & �' @ 	 $ %

� 6 � A � � 8 (15)

Proposition 5. For the expurgated ensemble � , the error ex-

ponents in (14) and (15) are minimized by � � � � � � with� � � � � 
 .

Proof. Given � and & ' , the detection bounds (14) and

(15) are independent of � . Given
$ H

, it follows from (6) that� � � � with � � � � � 
 simultaneously maximizes � and & ' ,

and therefore minimizes the error exponents (14) and (15). �
For any fixed � , the error exponents in (14) and (15) are

uniformly better than those obtained by drawing codes from

the Gaussian ensemble. The colluders can choose � 5 � such

that the exponents in Prop. 1 are worse than those for � � � � .
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