
SECURE EMBEDDING OF SPREAD SPECTRUMWATERMARKS USING
LOOK-UP-TABLES

Mehmet Utku Celik, Aweke Negash Lemma, Stefan Katzenbeisser and Michiel van der Veen

Information and System Security Group
Philips Research Europe

Eindhoven, The Netherlands 5656 AE

ABSTRACT

In an electronic content distribution system, it is preferable to embed

forensic tracking watermarks at the client-side to limit bandwidth

usage and server complexity. Embedding in these untrusted clients,

however, requires secure embedding methods that do not leak un-

marked contents or the watermarking secrets. In this work, we

propose a look-up-table (LUT) based cipher, similar to Anderson’s

Chameleon cipher, for securely embedding spread-spectrum water-

marks, which are noise robust and detectable without the original

content. We also develop fast detection mechanisms that make the

watermark detection feasible for tracking systems with large number

of clients. Our fast detection algorithm improves detection speed six

orders of magnitude in a typical system.

Index Terms— Forensic tracking, fingerprinting, copyright pro-

tection, stream-cipher

1. INTRODUCTION

In the last decade, we have experienced a clear trend toward elec-

tronic distribution of audio-visual content. The threat of copyright

infringement, however, continues to be a significant problem for

record companies and movie studios. An effective deterrent against

illegal re-distribution of copyrighted content is forensic tracking wa-

termarking (a.k.a. fingerprinting), where each distributed copy of the

content carries a unique watermark (fingerprint) that links that par-

ticular copy to the consumer who receives it. Upon discovery of an

unauthorized copy (e.g. on a peer-to-peer network), the watermark

present in the copy is probed to reveal the identity of the consumer.

Today, electronic content distribution systems embed forensic

tracking watermarks primarily at the distribution server. Uniqueness

of each copy, however, prevents the use of network-level bandwidth

saving mechanisms such as multi-casting and caching. The band-

width requirement rapidly becomes prohibitive for mass-scale dis-

tribution. Therefore, it is preferable to embed the watermark at the

client—not only to limit the bandwidth usage, but also to reduce

server complexity and to enhance scalability. A single unmarked

master copy is sent to all clients in encrypted form eliminating the

bandwidth bottleneck. Each client device embeds its unique water-

mark to the master content. Embedding in these untrusted clients,

however, require secure embedding methods that do not leak un-

marked contents or the watermarking secrets.

In secure embedding, the content is sent to the client in en-

crypted form along with a client-specific decryption key. The de-

cryption process and watermarking process are securely intertwined

so that decryption results in a different—uniquely watermarked—

content copy personalized for the client. Security of the embedding

is based on the design of the particular encryption and decryption

methods. In literature, basically four different approaches for secure

embedding can be found. In [1], Emmanuel et al. encrypt each video

frame by masking it with a noise sequence. Decrypting the video

frame using a unique decryption key including a watermark auto-

matically superimposes the corresponding watermark on the content.

The scheme achieves perfect security if a new masking sequence is

generated for each frame, at the cost of transmitting a very long de-

cryption key. Another approach, called stream switching, divides the

content stream into various segments (e.g. chapters in a movie) and

prepares multiple versions of each segment by embedding a differ-

ent watermark and encrypting with a different key [2,3]. Each client

is given a unique series of decryption keys that enables him to de-

crypt one version of each segment. The selection of decryption key

series encodes the forensic tracking payload in the whole content.

The scheme is susceptible to collusion attacks, where a group of at-

tackers can implicate an innocent client by pooling together their

decryption keys. Collusion-secure codes [4] can counter the attack,

but they require large number of content segments. In [5], Kundur

et al. encrypt signs of all significant (mid-frequency) DCT coeffi-

cients in an image and give each user necessary keys to decrypt only

a subset of these coefficients. The coefficients that remain scrambled

form a forensic mark (fingerprint). While the scheme is efficient in

its partial encryption of compressed data, the lack of efficient detec-

tion mechanisms and collusion security measures severely limit its

potential use.

In [6], Anderson and Manifavas present a stream-cipher that sup-

ports the use of multiple decryption keys, which decrypt the same

cipher-text to slightly different (watermarked) plain-texts. During

encryption, a short-term key and a secure index generator are used to

generate a sequence of indices, which are used to select entries from

a look-up-table (LUT). Four selected entries are XORed together

with the plaintext to form a word of the ciphertext. The decryption

process is identical to encryption except for the use of a decryption

LUT, which is obtained by injecting bit “errors” in some entries of

the encryption LUT. Decryption superimposes these “errors” onto

the content, thus leaves a unique fingerprint. Recently, Adelbach

et al. [7] proposed a generalization of the Chameleon cipher, called

Fingercasting. In their scheme, the LUT entries are randomly chosen

elements from Zp and the XOR operation is replaced by a modular

addition in Zp. As a result, the scheme can embed spread-spectrum

watermarks. Authors provide rigorous security proofs for the confi-

dentiality of the resulting cipher.

II 1531424407281/07/$20.00 ©2007 IEEE ICASSP 2007

In this paper, we utilize a secure embedding mechanism which is

similar to the Chameleon [6] and Fingercasting [7]. Instead of XOR

or modular operations, we use regular additions on real numbers.

As a result, our watermark can be detected even after subsequent

noise addition or lossy compression (unlike Chameleon) and in the

absence of the original content (unlike Fingercasting) (Sec. 2). We

further observe the high computational complexity of the detection

of [7] and develop alternate detection mechanisms, which are up to

six orders of magnitude faster (Sec. 3).

2. SECURE EMBEDDING USING LUTS

Our secure embedding mechanism for spread-spectrum watermarks

is based on an encryption framework which is similar to the

Chameleon cipher [6]. The server encrypts the content by adding

a pseudo-random blinding sequence which is obtained by selecting

entries from a long-term encryption look-up table (LUT) based on a

secure pseudo-random sequence generator. Each client decrypts the

content using his/her personalized decryption LUT, which is a su-

perimposition of the encryption LUT and a personalized watermark

LUT. (See Fig. 1). As a result, the decryption process effectively

superimposes a spread-spectrum watermark sequence onto the de-

crypted content. The personalized nature of the watermark sequence

makes it possible to trace the decrypted content back to an individual

client. In the following we describe the key generation, encryption

and decryption operations in greater detail.

Encrypted
ContentModification

Session
Key

Index
Generator

Table
Look-Up

Enc.
LUT

Watermarked
Content

Content Modification

Session
Key

Index
Generator

Table
Look-Up

Dec.
LUT

Server Client

Fig. 1. Encryption and corresponding joint decryption and water-

marking procedures.

2.1. Key generation

The server constructs a long-term encryption key E, which has the

form of a LUT of size L. The entries of the table, E[i], are cho-

sen independently and randomly according to a Gaussian probability

distribution (E[i] ∼ N (0, σE)). The table E is considered to be the

master encryption key and it is common for all N clients. For each

client k ∈ {0, 1, . . . , N − 1}, the server chooses a personalized wa-

termark LUTWk of sizeL. The entries ofWk are chosen randomly

according to a desired probability distribution (Wk[i] ∼ N (0, σW)
with σW < σE). The server constructs a personalized decryption

LUT, denoted byDk by computing

Dk[i] = −E[i] +Wk[i], (1)

for 0 ≤ i ≤ L − 1. Finally, Dk is transmitted to each client over

a secure channel. Note that both E and Dk are long-term encryp-

tion/decryption keys, which do not need to be updated by each and

every transaction. In addition to this long-term encryption key, the

server transmits to authorized users a session keyK which is unique

for each content.

2.2. Encryption

We denote the original content by a vector x of length M with el-

ements x0, x1, . . . , xM−1 ∈ R. To encrypt content, the server first

uses an index generator (which can be a pseudo-random number

generator or a stream cipher operating in OFB mode) and the ses-

sion key K to generate indices tij to its master lookup table, where

0 ≤ i ≤M − 1, 0 ≤ j ≤ S − 1 and 0 ≤ tij ≤ L− 1. Finally, the

server distorts each feature xi of the content by adding S entries of

the lookup table, thereby yielding the encrypted content c, where

ci = xi +
S−1∑
j=0

E[tij]. (2)

2.3. Decryption & Watermarking

To decrypt the content, the client uses the index generator and its

session keyK to reconstruct the indices tij used by the server in the

encryption step. By inverting the encryption process with its own

decryption table, it can obtain watermarked content y:

yi = ci +
S−1∑
j=0

D[tij] (3)

= xi +
S−1∑
j=0

W[tij].

3. WATERMARK DETECTION

Forensic tracking watermark detection may be performed off-line,

possibly in the presence of abundant computational resources and

time. In many practical applications, however, detection fast and

low-cost detection is crucial. In this section, first we present typical

system parameters, which we later use to compare the complexity of

different detection algorithms.

3.1. Parameters for a typical forensic tracking system

In our hypothetical forensic tracking system for video distribution,

we assume a spread-spectrum watermark embedded into one co-

efficient (e.g. DC) in every 8 × 8 DCT block of a video se-

quence. In standard-definition video (e.g. PAL 576×720 pixels @50
fields/sec.), there are approximately 160, 000 8 × 8 blocks per sec-

ond. Assuming detection over a 2 minute video clip, the total number

of watermarked coefficients is close to 20 million (M = 2.0× 107).
The LUTs in our system have 1 million entries (L = 1.0× 106) and

four look-ups are performed for each coefficient (S = 4). We further

assume 100 million clients in our distribution area (N = 1.0× 108).

3.2. Basic detection method

During watermark detection, the server uses the session key K and

the index generator to reconstruct the indices tij used in the encryp-

tion step. Using watermark LUTWk for each client, it computes a

watermark sequencewk = wk,0, wk,1, . . . , wk,M−1 by

II 154

Table 1. Watermark detection complexity, A) when watermark sequence is correlated with the estimated sequence, B) when watermark LUT is correlated
with the estimated LUT, C) when circular correlations are performed using FFTs (Γ = 2 �N/L�+ 1).

One-time ops Per client ops Total ops

Idx L-up Add Mult Idx L-up Add Mult Idx L-up Add Mult

A Construct watermark - - - - SM SM SM −
M

- SMN SMN SMN−
MN

-

A Correlate watermark - - - - - - M M - - MN MN
A Total - - - - SM SM SM M SMN SMN SMN MN

B Construct LUT SM SM SM - - - - - SM SM SM -

B Correlate LUT - - - - - - L L - - LN LN
B Total SM SM SM - - - L L SM SM SM +

LN
LN

C Construct LUT SM SM SM - - - - - SM SM SM -

C Correlate LUT - - ΓL logL ΓL logL - - - - - - ΓL logL ΓL logL
C Total SM SM SM +

ΓL logL
ΓL logL - - - - SM SM SM +

ΓL logL
ΓL logL

Table 2. Detection complexity for different detection methods (S = 4,N = 1.0× 108,M = 2.0× 107, L = 1.0× 106).
Detection Method Idx L-up Add Mult Total

Sequence correlation 8.0× 1015 8.0× 1015 8.0× 1015 2.0× 1015 2.6× 1016

LUT correlation 8.0× 107 8.0× 107 ∼ 1.0× 1014 1.0× 1014 ∼ 2.0× 1014

Circular LUT correlation 8.0× 107 8.0× 107 ∼ 4.1× 109 ∼ 4.0× 109 ∼ 8.3× 109

wk,i =
S−1∑
j=0

Wk[tij]. (4)

The server correlates wk with an estimated watermark z obtained

from the “suspect” (possibly watermarked) content. The correlation

value is compared with a suitably chosen threshold to decide if the

watermark for that particular client is present in the suspect content

(Fig. 2). The process is repeated either for all clients or until a pos-

itive match is found. We evaluate the complexity of the detection

Stream-
CipherKey

tn,0

OFB

0

0

0

+2

0

0

0

0

-3

0

Wk Suspect Content
Wk [tn,0]

-3

Correlate Threshold

Estimate
Watermark

tn,1

Wk [tn,1]

0

Decision

Fig. 2. Detection procedure (S = 2) in which watermark sequence

is reconstructed and correlated with the watermark estimate derived

from the received signal.

process in terms of four basic operations: index generation (Idx),
table look-up (L-up), addition (Add), and multiplication (Mult). As-

suming detection is repeated for all clients, the detection complexity

increases linearly with the number of coefficients in the content and

the number of clients (A in Table. 1). When above parameters are

used, the detection process requires roughly 2.6× 1016 operations

(Table 2), which would take more than 300 days on a machine capa-

ble of 1G ops/sec (billion operations per second). This complexity

is prohibitive in many practical applications and faster methods are

necessary.

3.3. An alternate detection strategy: Correlating LUTs

When we examine the watermark detection process, we observe that

the correlation value is a linear combination of elements in the water-

mark sequence, which in turn are linear combinations of watermark

LUT entries. That is,

〈z,w〉 =
∑M−1

i=0 ziwi

=
∑M−1

i=0 zi

(∑S−1
j=0 W[tij]

)

=
∑M−1

i=0

∑S−1
j=0 ziW[tij].

(5)

We further observe that obtaining the watermark sequence w from

the watermark LUT W for each client creates significant complex-

ity. Fortunately, the linearity of the correlation allows us to replace

this process, which needs to be done for each client, with a process

performed once on the suspected content.

In this new detection algorithm, first we construct a suspect LUT

Z from the sequence of watermark estimates z, which are obtained

from the suspect content. To construct Z, we start with a LUT of

size L filled with zeros. Subsequently, we reproduce the index se-

quence tij and for each 0 ≤ i < M , we add the element zi to all

positions tij of the LUT Z with 0 ≤ j < S. Once all elements of

the sequence are processed, the resulting LUT Z is correlated with

the LUT Wk of each client to obtain the detection result 〈Z,Wk〉
(Fig. 3). Correlating the LUTs is equivalent to correlating the wa-

termark sequence w with the suspected content z, as by Eqn. 5 we

have

〈Z,W〉 =
∑L−1

l=0 Z[l]W[l]

=
∑L−1

l=0

(∑
i,j|ti,j=l zi

)
W[l]

=
∑L−1

l=0

∑
i,j|ti,j=l ziW[tij]

=
∑M−1

i=0

∑S−1
j=0 ziW[tij].

(6)

II 155

Stream-
CipherKey

tn,0
tn,1OFB

0

0

0

0

-2

0

0

0

-2

0

Z

Correlate Threshold

Suspect Content

Wk
Estimate
Watermark

Accumulate
Table

-2

tn,0

tn,1

Decision

Fig. 3. Alternate detection procedure. Watermark estimates are

accumulated in an empty LUT at positions indicated by tij . This

LUT is then correlated with the watermark LUT for detection.

Note that the LUT construction step of the new algorithm is per-

formed only once, considerably speeding up the detection (see row

B in Table. 1). Comparing rows A and B, we further see that com-

plexity of the new correlation step is proportional to the LUT size

(L) instead of content size (M). While L and M are system para-

meters that can be chosen freely, in all cases it is preferable to choose

L � M to limit the bandwidth overhead due to LUT transmission.

For the typical parameters above, the alternate detection method is

more than two orders of magnitude faster than the basic detection

method. However, detection still takes about 3 days on a single 1G

ops/sec machine (Table 2).

3.4. An alternate LUT selection strategy: Circular Shifts

So far, we have assumed that the watermark LUTs for different

clients are selected independently. While this approach is favorable

in terms of security, as it creates the most uncertainty for attack-

ers that may access LUTs from multiple clients, it requires a sep-

arate correlation step for each client thereby considerably slowing

the detection. We propose an alternate LUT selection mechanism

in order to speed up detection. Particularly, each client LUT is ob-

tained by circularly shifting a reference LUT (R) by a fixed offset,

i.e. Wk = CircShift(R, k). The correlation values between two

sequences for all possible circular shifts can be computed efficiently

in a single step using the Fast Fourier Transform (FFT). In our case,

we use this property to compute the correlation between the suspect

LUT Z and all client LUTs, which are circularly shifted versions of

the reference LUTR. LetΦ be

Φ = IFFT (FFT (R). ∗ conj (FFT (Z))) , (7)

where .∗ is the element-wise multiplication, conj is the complex

conjugate and FFT , IFFT are forward and inverse FFTs. Each

element of Φ corresponds to the correlation between Z and a cir-

cularly shifted version of R, where the index of each element in Φ
indicates the shift amount:

Φ[k] = 〈CircShift(R, k),Z〉 (8)
= 〈Wk,Z〉 . (9)

Thus, L correlations can be computed simultaneously with only

three FFT operations, each real FFT taking approximately L logL
real additions and L logL real multiplications. The complexity of

the correlation process reduces from L2, as required by regular cor-

relations, down to 3L logL additions and multiplications.

As the reader may have noticed, the watermark construction pro-

posed above only supports a maximum of L possible shifts, thus L
unique watermark LUTs or clients. However, in a typical system (as

the example system given above) the number of clients N far ex-

ceeds the LUT size L. In this case, we divide the users in Λ = N
L

groups and assign each group an independent reference LUT, Rλ,

where λ ∈ {0, 1, . . . ,Λ− 1}. The watermark LUT for a client will

then be Wk = CircShift(R�k/L�, (k − k 	k/L
)). When multiple

reference patterns are used for LUT selection, the suspected content

has to be correlated with every reference LUT Rλ. Each computa-

tion requires three real L-point FFT operations. As FFT (Z) only

needs to be performed once, correlation with Λ reference patterns

requires Γ = 2Λ + 1 FFTs (C in Table. 1). For the typical pa-

rameters above, we require hundred reference patterns (Λ = 100).

Corresponding detection takes less than 9 seconds on a single 1G

ops/sec machine (last row of Table 2). This is six orders of magni-

tude smaller than the basic detection system.

4. CONCLUSIONS

In this paper, we have proposed a method for securely embedding

spread-spectrum watermarks on the client-side in an electronic con-

tent distribution system. We have shown that the watermark detec-

tion process can be sped-up by six orders of magnitude for a typical

system, if the watermark LUTs for different clients are derived from

a limited set of reference LUTs and correlation is performed directly

on LUTs. Currently, we are trying to quantify the security of the sys-

tem against various attack models, including collusion attacks where

correlated watermark LUTs may adversely affect system security.

5. REFERENCES

[1] S. Emmanuel and M. Kankanhalli, “Copyright protection for

MPEG-2 compressed broadcast video,” in ICME 2001. IEEE
Int. Conf. on Multimedia and Expo., 2001, pp. 206–209.

[2] R. Parviainen and P. Parnes, “Large scale distributed watermark-

ing of multicast media through encryption,” in Proc. of IFIP TC6
and TC11, 2001, pp. 149–158.

[3] H. Jin and J. Lotspiech, “Attacks and forensic analysis for mul-

timedia content protection,” in Proc. of ICME. IEEE Int. Conf.
on Multimedia and Expo, 2005.

[4] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for dig-

ital data,” IEEE Trans. Info. Theory, vol. 44, no. 5, pp. 1897–

1905, Sept. 1998.

[5] D. Kundur and K. Karthik, “Video fingerprinting and encryption

principles for digital rights management,” Proceedings of the
IEEE, vol. 92, no. 6, pp. 918–932, 2004.

[6] R. J. Anderson and C. Manifavas, “Chameleon - a new kind of

stream cipher,” in FSE ’97: Proc. of the 4th Int. Workshop on
Fast Software Encryption. London, UK: Springer-Verlag, 1997,

pp. 107–113.

[7] A. Adelsbach, U. Huber, and A.-R. Sadeghi, “Fingercasting—

joint fingerprinting and decryption of broadcast messages,” in

11th Australasian Conf. on Info. Security and Privacy, 2006.

II 156

