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ABSTRACT

We describe a method to encode fingerprint biometrics securely for
use, e.g., in encryption or access control. The system is secure be-
cause the stored data does not suffice to recreate the original finger-
print biometric. Therefore, a breach in database security does not
lead to the loss of biometric data. At the same time the stored data
suffices to validate a probe fingerprint. Our approach is based on
the use of distributed source coding techniques implemented with
graph-based codes. We present a statistical model of the relationship
between the enrollment biometric and the (noisy) biometric mea-
surement taking during authentication. We describe how to validate
or reject a candidate biometric probe given the probe and the stored
encoded data. We report the effectiveness of our method as tested on
a database consisting of 579 data sets, each containing roughly 15
measurements of a single finger. We thereby demonstrate a working
secure biometric system for fingerprints.

Index Terms— Biometric, fingerprint, distributed coding, Slepian-
Wolf coding, belief propagation decoding

1. INTRODUCTION

Securing access to physical locations and to data is of primary con-
cern in many personal, commercial, governmental and military con-
texts. Classic solutions include carrying an identifying document or
remembering a password. Problems with the former include forg-
eries and with the latter poorly-chosen or forgotten passwords.

Computer-verifiable biometrics provide a third approach. In these
systems a sensor measures a biological feature of a person, for ex-
ample, a fingerprint or an iris scan. It then compares the new sample,
termed the probe, to a stored sample, termed the enrollment. If the
samples match then, depending on the application, the person could
be granted access or given a cryptographic key that is a function of
the biometric. Advantages of biometrics include the fact that they
cannot be forgotten, they can be hard to guess, and they can be diffi-
cult to forge.

Biometrics have certain characteristics that pose novel challenges
and create new security holes. A central characteristic that differ-
entiates biometrics from passwords is that each time a biometric is
measured the observation differs. In the case of fingerprints the read-
ing might change because of elastic deformations in the skin when
placed on the sensor surface, dust or oil between finger and sensor, or
a cut to the finger. Biometric authentication systems must be robust
to such variations.
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Most biometric authentication systems deal with such variabil-
ity by relying on pattern recognition. To perform recognition the en-
rollment biometric is stored on the device. This results in a serious
security hole. If a malicious attacker gains access to the device, the
attacker also gains access to the biometric. In contrast, passwords
are not stored “in-the-clear”. Instead, only the hash of a password is
stored. When a user types in a password the computer compares the
hash of the probe password to the stored hash Only if they match is
access granted. Since the hash is effectively impossible to invert, se-
curity is not compromised even if an attacker learns the stored hash.
Several researchers have attempted to develop “secure” biometric
systems with similar characteristics.

Davida, Frankel, and Matt [1] consider the use of error correc-
tion coding as a solution to the secure biometrics problem. Juels
and Sudan [2] introduce the idea of a fuzzy vault to formalize the
use of error correcting codes for such applications. Some construc-
tions for fingerprint biometrics exist, e.g., [3–5], but yield high false
reject rates (FRRs). A main stumbling block is how to model and ex-
ploit the statistical relationship between enrollment and probe. From
an information theoretic perspective the secure biometric problem
is a problem of “common randomness” [6]. Different parties ob-
serve correlated random variables (the enrollment and the probe) and
then attempt to agree on a shared secret key (the enrollment biomet-
ric). The basic tool used to extract the secret is a distributed source
code [7].

Our formulation and proposed solution build on both sets of
works. In our implementation we develop a statistical model of the
“fingerprint channel” relating the enrollment to the probe, and use a
graphical code to compress and scramble the enrollment probe. It-
erative decoding using belief propagation (BP) is performed across
both graphs. This successfully captures both the structure of the code
and that of the measurement channel. Our initial work in this area
considered iris biometrics [8].

The outline of the remainder of the paper is as follow. In Sec-
tion 2 we describe the operation of the system, identify an appropri-
ate biometric feature set, develop a fingerprint channel model, and
describe a natural attack on secured biometric systems. In Section 3
we test our channel model on synthetically-generated data, demon-
strate that simpler models do not lead to good decoding performance.
We then evaluate our system on a database of roughly 8100 test fin-
gerprints. We conclude and discuss future work in Section 4. In this
paper we focus on the implementation and evaluation of our proto-
type system. More details on system security can be found in [9].

2. FEATURE SET AND STATISTICALMODELING

In this section we describe the operation of our system and its re-
quired components. At enrollment we measure the original biomet-
ric x and compress it into a scrambled “syndrome” s which is our
secured biometric. During authentication we measure y, a noisy ver-

II  1291424407281/07/$20.00 ©2007 IEEE ICASSP 2007



minutiae
feature
extraction

1 1
1 1 1

1 1 1
1

1

1

1
1
1111

1 1

1 1
1 1 1 1 1

11111

1

1

Fig. 1. Fingerprint and extracted feature vector.

sion of x and, from s and y, estimate x. Only if the estimate is perfect
(verified by comparison of the cryptographic hash of the estimate
with a hash of the original x) is authentication given. The system
stores the syndrome s, the cryptographic hash of x, and the joint dis-
tribution px,y,s(x,y, s), described below. In the rest of this section
we specify an appropriate representation of fingerprints, develop the
statistical model px,y,s(x,y, s), and conclude with a discussion of
security.

2.1. Fingerprint representation

A popular method for working with fingerprint data is to extract a
set of “minutiae points” and to perform all subsequent operations
on them. Figure 1 gives an example of a fingerprint, the minutiae
points, and the extracted feature vector that we work with. Each
minutiae is a discontinuity in the ridge map of a fingerprint, indi-
cated by the circles in the left-hand plot. These points are mapped
to a list of triplets representing the spatial and angular coordinates
of each minutiae point. We visualize the feature vector using a ma-
trix as depicted in the right-hand plot. Each quantized coordinate
corresponds to a particular location in the matrix. The presence of
a minutiae is indicated by a ‘1’. More generally, instead of simply
indicating the presence or lack of minutiae points, the entries could
indicate the angles of enrolled minutiae points.

2.2. Modeling the movement of ngerprint minutiae

We create a statistical model for the fingerprint channel which cap-
tures three effects: (1) movement of enrollment minutiae when ob-
served the second time in the probe, (2) deletions–minutiae observed
at enrollment, but not during probe, and (3) insertions–“spurious”
minutiae observed in probe, but not during enrollment.

Figure 2 depicts the factor graph [10] model we develop. The
presence of a minutiae point at position t in the enrollment grid is
represented by the binary random variable xt that takes on the value
xt = 1 only if a minutiae is present during enrollment. For simplic-
ity, the figure shows one-dimensional movement model. The results
reported in this paper all use a two-dimensional movement model.
We model the enrollment feature vector x as a Bernoulli-pp inde-
pendent identically distributed (i.i.d.) random vector. These prior
probabilities are denoted by the white-square factor nodes (�).

For each position in the enrollment grid there is a corresponding
position in the probe grid. The presence of a minutiae point at grid
position t in the probe is represented by the binary random variable
yt taking on value yt = 1.
Some minutiae observed during enrollment are not observed in

the probe. The binary random variable ht represents one such era-
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Fig. 2. Factor graph of minutiae movement model.

sure. It takes on value ht = 1 if xt is erased. The black-square factor
nodes (�) represent the prior probability of on ht. We model h as an
i.i.d. Bernoulli-pe sequence.

Our model captures the local elastic deformations in the skin
that occur when a fingerprint is placed on a sensor. We assume
that global translations and rotations of a fingerprint are corrected
through a combination of pre-processing and a search over small
(rigid) shifts. To model the elastic deformations with suitable ac-
curacy, the model must capture the motion of the fingerprints about
their enrollment positions.

For each enrollment position t the model specifies a neighbor-
hood N (t) of positions to which the enrollment minutiae can move.
The zt variables in Fig. 2 capture the relative change in position of
an enrollment minutiae, and zN (t) = {zi|i ∈ N (t)} are the set
of these variables in the neighborhood of enrollment position t. The
upside-down triangle factor nodes (�) represent the prior probability
distribution both on minutiae movement and the event that a spurious
minutiae is generated at this position. If a minutiae moves beyond
its neighborhood, the model treats it as a deletion and an insertion.

The variables zt take values in the set zt ∈ {�, ∗, ΔN (t)}. If
zt = �, then a spurious minutiae unrelated to the enrollment was
generated at position t in the probe. If zs = ∗ there is no minutiae
at position t in the probe (i.e., yt = 0). The diamond factor nodes
(♦) connecting each yt to its corresponding zt capture the notion
that each probe minutiae yt can only be non-zero if there is a cor-
responding zt �= ∗. Finally, ΔN (t) is the set of relative shifts that
define the possible movements, and the neighborhood N (t). For ex-
ample, in the simple one-dimensional movement model of Fig. 2,
ΔN (t) = {−1, 0, 1}. This definition of the zt captures the conti-
nuity in the elastic deformation of the skin as only a single minutiae
can move to each probe location.

Both the support of minutiae movement (the choice of theΔN (t))
and the prior on the movement (the distribution on zt) are design
choices. While a larger neighborhood helps to capture the tails of
minutiae movement, it also incurs greater computational complexity
and adds loops to the graphical model. These extra loops can ul-
timately pose problems for the graph-based inference algorithm we
used to decode. We use belief propagation (BP) as our decoding
algorithm.

Each enrollment minutiae xt is constrained to move only within
its neighborhood N (t). Furthermore, it can move to only one point,
and therefore can explain only a single minutiae point observed in
the probe. The triangular factor nodes (�) in Fig. 2 capture these
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movement constraints.
The complete model gives px,y(x,y) = px(x)py|x(y|x) =
X

{hi}

X

{zi}

Y

t

�(xt)�(ht)∇(zt)�(xt, ht, zN (t))♦(zt, yt).

In this paper the secure biometric s is a “syndrome” vector. Each
syndromes sj is the mod-2 sum of the enrollment variables xt to
which sj is connected by a syndrome graph. The connections defin-
ing the syndrome graph are generated according to a low-density
parity-check (LDPC) code. These are state-of-the-art channel codes.
A main reason for using LDPCs is that they are well represented
graphically. This makes it easy to merge their description into the
graphical model movement to implement BP decoding. Each lo-
cal constraint of the syndrome code �(sj, x) is an indicator func-
tion equaling one if the value of the syndrome sj is compatible
with x and zero otherwise. The complete model used for decoding
px,y,s(x,y, s) = px,y(x,y)

Q
j
�(sj ,x) is shown in Fig. 2.

Given the graphical model for px,y,s, the raw message passing
rules for use in belief propagation can be derived using standard
techniques [10]. In order to make the computations tractable we in-
troduce a number of computational optimizations. These optimiza-
tions exploit the particular structure of the messages, the graph, and
the quantities being computed. Due to space constraints, we do not
further discuss these optimizations here

2.3. Security

We now quantify the security of our system. Since the source x is
a Bernoulli-pp i.i.d. sequence, its entropy rate is Hb(pp). Say that
we use a rate-RLDPC code to encode the biometric. Then, an at-
tacker that limits itself to guesses x̃ that encode to the same secure
biometric swill require 2n(RLDPC+Hb(pp)−1) guesses to identify the
actual x with high probability. Coding rates RLDPC > 1−H(x) =
1−Hb(pp) give positive information theoretic security. The higher
the rate the greater the secrecy, but also the more challenging the de-
coding problem. As long as RLDPC < 1 − (1/n)H(x|y) the prob-
ability of successful authentication converges to zero asymptotically
in the block-length.
When RLDPC < 1 − Hb(pp) the system is not information-

theoretically secure. However, recovering x from s can still be very
difficult. This recovery is a “syndrome” decoding problem with x

playing the role of the error sequence. Syndrome decoding requires
storage of a look-up table of size 2n(1−RLDPC). In the results pre-
sented herein n = 7000 and we use a rate-0.94 LDPC. This means
that the table size is larger than 2400 , so syndrome decoding is in-
tractable. However, if RLDPC is much smaller than 1 − Hb(pp)
other approaches can tractably recover x.
We introduce the “zero-probe” attack to test this security. The

attacker know s, it knows the code structure, and it can use any attack
it likes. The attacker guesses y = 0 and uses BP to try to solve the
syndrome decoding problem. If RLDPC is small enough this BP-
based attack will recover x. However, when RLDPC is below, but
close to 1 − Hb(pp) this attack fails. We report the efficacy of this
attack, as well as that of the standard biometric attack of using some
other fingerprint in conjunction with s to decode. The success rate of
the latter attack is given by the false-acceptance rate (FAR). A more
detailed analysis of system security is provided in [9].

3. EXPERIMENTAL RESULTS

We now report decoding performance on synthetic data as well as on
a proprietary Mitsubishi Electric (MELCO) fingerprint database.

LDPC 0-probe Simple Full Model, FRR
Rate SAR FRR pe = 0 ps = 0 S & E

0.92 0.37 0.48

0.93 0.23 0.76

0.94 0.0 1.0 7.0e-3 9.4e-3 46e-3

0.95 0.0 1.0 4.2e-3 17e-3 79e-3

Table 1. Zero-probe SAR (successful attack rate), simple model
FRR, and full-model FRR for synthetic test data. We do not simulate
the full model for RLDPC = 0.92, 0.93 since the zero-probe attack
is successful at those rates.

3.1. Synthetic data

The synthetic data model consists of a 70 × 100 grid of minutiae
locations. The prior probability on the presence of a minutiae is
pp = 0.005. The probability of an erasure is pe = 0.2. The prob-
ability of a spurious minutiae is ps = 0.001. We use a uniform
prior on movement over a two-dimensional area with a maximum
displacement of 2 in either the horizontal or vertical directions. Each
(non-edge) minutiae has a neighborhood size |N (t)| = 25.
The syndrome code is a randomly-generated LDPC code. For

RLDPC = 0.94 all check nodes are of degree 50, 0.1% of the vari-
able nodes are of degree 2, 99.8% are of degree 3, and 0.1% are of
degree 4. ForRLDPC = 0.95 all check nodes are of degree 80, 60%
of the variable nodes are of degree 3, and 40% are of degree 8.
We test the effectiveness of the zero-probe attack by generating

10000 attacks on 10000 independently-generated syndromes at dif-
ferent code rates. The results in terms of SAR (successful attack
rate) are reported in the second column of Table 1. We conclude that
for RLDPC ≥ 0.94 our system is safe from the zero-probe attack,
although it is not information theoretically secure.
To test the necessity of the detailed minutiae movement model of

Sec. 2 we evaluate a simpler statistical model. Erasures and spurious
minutiae are modeled as in Sec. 2. But, instead of joint constraints on
minutiae movement, we model minutiae movements as independent.
If a minutiae is present in the probe at position t (i.e., yt = 1), we
model the likelihoods of any xt′ such that t ∈ N (t′) as equally
likely. The resulting FRRs of BP decoding using this “simple model”
are reported in Table 1. The performance in terms of error rates is
comparable to (indeed, slightly worse than) that of the zero-probe
attack (compare the FRR with one minus the zero-probe SAR).
Finally, to generate results for the full model, we sample 50 dif-

ferent codes at random from the degree distribution and test each on
1000 independent samples of (x, y). FRR is averaged over all trials.
To understand the relative impact of erasures and spurious minu-
tiae, we also considered the case of movement and spurious only
(pe = 0), and movement and erasures only (ps = 0). Erasures are
seen to be more harmful than spurious insertions.

3.2. Tests on MELCO database

The MELCO database consists of measurements of 1000 fingers.
Each of these 1000 data sets contains roughly 15 measurements of
the corresponding finger. We select one of the measurements as the
enrollment and try to decode using the remaining measurements as
probes. All syndrome calculations use the rate RLDPC = 0.94 code
described above. We simulated the performance of 1000 randomly-
generated codes on synthetic data and used the 5 best in a round-
robin manner to encode the MELCO data. This avoids particularly
bad random codes. We now detail the experimental setup.
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Fig. 3. Empirical movement statistics.

1. The locations of the minutiae points are quantized to reside in
a 70× 100 grid giving block-length n = 7000.

2. Because we only use a rateRLDPC = 0.94 code for these ini-
tial experiments, we eliminate all data sets for which all mea-
surements have 30 or fewer, or 36 or more minutiae points,
leaving 648 data sets. Our choice of encoding rate makes the
former susceptible to the zero-probe attack and the latter have
an unacceptably high error rate. By matching the encoding
rate to the biometric entropy, this step can be avoided.

3. To get a sense of the pairwise noise between measurements
we compute a score between any pair of observations. We
first make a greedy match between minutiae points where the
infinity-norm distancemax{|xa − xb|, |ya − yb|} between a
matched pair is not allowed to exceed 3. Unmatched enroll-
ment minutiae are classified as erasures and unmatched probe
minutiae as insertions. Each matched pair is assigned a score
equal to its squared Euclidean distance. Erasures are assigned
a score of 20 and spurious minutiae a score of 10.

4. For each data set we select the enrollment measurement as the
measurement with the largest number of probes with scores
less than 300. If no measurement met this criterion we elim-
inate that data set. We do this to model the fact that multiple
measurements can be made at enrollment to ensure a repre-
sentative biometric reading. This left 579 data sets that we
use to calculate FRR and FAR results, reported in Table. 2.

5. We use the matching algorithm to calculate movement statis-
tics. The mean and standard deviation of movement, erasures,
and insertions (Pr[zt = �|yt = 1]) are plotted in Fig. 3.

6. The parameters of the statistical model used for decoding are
set according to the empirically measured statistics. The prior
on a minutiae moving a given distance is uniformly divided
among all positions at that distance. We note also that the
fingerprints in the MELCO database are not aligned. Be-
fore attempting to decode we first align the probe with the
enrollment data. Since the overlap in the area of enrollment
and probe fingerprints is only partial, we adjust the decoding
model appropriately (setting pe = 1 outside the overlap).

The results of our tests are given in Table 2. The first and sec-
ond columns indicate the number of enrollment minutiae (and the
corresponding source entropies) and the number of data sets at each
enrollment parameter. The final four columns contain FRR and FAR
results and the number of probes used to calculate them. While the
enrollment files are limited as discussed above, all 1000 fingerprints
are used to calculate the FARs. As is predicted by theory, FRR in-
creases with enrollment entropy while FAR decreases. The zero-
probe attack failed on all enrollment. An examination of the enroll-
ment entropies reveals that our codes are not yet strong enough to get

# enrolled Num. FRR FAR
minu. (ent) files rate probes rate probes

31 (0.0410) 195 11.6e-2 2736 0.98e-2 11e4
32 (0.0421) 139 13.3e-2 1944 0.32e-2 78e3
33 (0.0432) 107 14.9e-2 1506 0.24e-2 60e3
34 (0.0443) 79 20.2e-2 1101 0.11e-2 44e3
35 (0.0454) 59 32.3e-2 824 0.03e-2 33e3

Table 2. Test parameters, FRR and FAR results for full model de-
coding working on MELCO data at encoding rate RLDPC = 0.94.

into the information theoretically secure region. This is our current
focus.

4. CONCLUSIONS

We present a prototype secure biometrics system for fingerprints.
The design is based on a model of minutiae movement and graphical
codes. Our current focus is the refined design of LDPC codes, bet-
ter matched to the asymmetric (and not memoryless) nature of the
fingerprint channel. The codes we currently use are optimized for
AWGN channels. Better codes will get into the information theoret-
ically secure region and improve the FRR/FAR trade off.
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