
Figure 1: Discretization of biometric features to exploit class-specific 
dependencies. 
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ABSTRACT

The biometrics based recognition systems proposed in the 
literature have not yet exploited user-specific dependencies 
in the feature level representation. This paper suggests and 
investigates the performance improvement of the existing 
biometric systems using the discretization of extracted 
features. The performance improvement due to the 
unsupervised and supervised discretization schemes is 
compared on verity of classifiers; KNN, naïve Bayes, SVM 
and FFN. The experimental results on the hand-geometry 
database of 100 users achieve significant improvement in 
the recognition accuracy and confirm the usefulness of 
discretization in biometrics systems. 

Index Terms— Biometrics, Hand Geometry, Personal 
Recognition, Feature Representation, Feature Discretization.

1. INTRODUCTION 

The feature representation in biometric literature has 
received little attention and the prior work has been quite 
limited to the usage of normalization schemes for 
performance improvement. A survey on biometrics 
literature [1] suggests that there has not been any effort to 
exploit user-specific dependencies in the feature level 
representation. The usefulness of discretization schemes is 
yet to be investigated in biometric based user identification. 
This paper therefore suggests and investigates the 
performance improvement using both supervised and 
unsupervised discretization schemes. The way features 
should be discretizaed is highly dependent on the classifiers. 
Therefore the improvement in the recognition accuracy, 
using different discretization approaches, is ascertained on 
variety of classifiers. 

The discretization of biometric features can offer 
several advantages. The discrete features are closer to 
knowledge-level representation than the continuous 
(nominal) values which may be unstable due to noise or 
inaccuracies in the feature extraction or image 
normalization algorithms. The problems due to such 
perturbations is likely to be smaller for those hand-geometry 
systems [3] that use user-pegs to constrain the rotation and 

translation of hand than those systems [4] employing 
unconstrained peg-free imaging, which highly relies on the 
efficiencies of the algorithm to achieve illumination, 
translation and rotation invariant features.  

The idea of discretization is to project continuous 
feature values into discrete ones such that the projection 
preserves important distinction among different users. 
Figure 1 illustrates the transformation of continuous feature 
F into discrete feature F* with values {V1, V2, V3, .…, Vn}
for n = 4. Each value Vi of the new feature F* represents 
certain range of numeric values in the original feature F.
Discretization methods in the machine learning literature 
have been categorized into supervised and unsupervised 
categories. The unsupervised discretization in its simplest 
form, also known as equal-interval width, divides an 
observed feature value range into k equal size bins where 
the parameter k is provided by user. Another unsupervised 
approach for the discretization is to use equal-frequency 
intervals. This approach sorts the available values of a 
feature and then assigns them to 1/k of the values in each 
bin. The supervised approaches also examine the 
distribution of class labels (users) and are more likely to 
give higher accuracies. The supervised discretization allows 
inter-class feature dependencies to be captured in the feature 
discretization and thus indirectly promoting accuracy. 

2. ENTROPY-BASED DISCRETIZATION 

The potential problems with the unsupervised discretization 
methods is the loss of classification information because of 
the resulting discretized feature values that are strongly 
associated with different classes in the same interval [5]. 
The supervised discretization uses sorted feature values to 
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locate the potential interval boundaries, i.e. cut point T, such 
that the resulting interval has strong majority of one 
particular class. The cut point for discretization is selected 
by evaluating favorite disparity measure, i.e class entropies, 
of candidate partitions. The multiple intervals of a feature 
are computed by recursively applying this algorithm on two 
intervals of previous split until some stopping criteria is 
satisfied. 
 The set S of instances, i.e. training samples, of a 
sorted feature array is firstly partitioned into subset S1 and 
S2. The class entropy of subset S is defined as; 
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where ),( SCp i  is the proportion of samples/instances lying 
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iC  and Z is the total number of classes. The 
resulting class entropy, due to partition of S into S1 and S2 is 
estimated by weighted average of resulting individual 
entropies. The class information entropy of the partition 
induced by a cut point T, for a feature F, is computed as 
follows [8]: 
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The cutpoint for which E(F,T;S) is minimum amongst all 
the candidate cutpoints is taken as best cutpoint TF and 
determines the binary discretization of feature F. The 
splitting procedure is recursively applied unless a stopping 
criterion is reached. The stopping criteria prescribe to accept 
a partition induced by cutpoint T only if there is any gain 
after splitting. Thus a partition due to cutpoint T is accepted 
only if; 
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The number of samples in set S is denoted as M, and the 
number of classes present in S1 and S2 are z1 and z2
respectively.
           Another supervised approach for evaluating the 
worth of the features is to measure the average compression 
(per sample) of the class afforded by an attribute. 
Kononenko [6] has shown that this criterion is the most 
promising on multivalued features among a number of other 
simple impurity-based measures. This measure, commonly 
referred as minimum description length (MDL), i.e.,
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where n is the number of training samples, Z is the total 
number of classes, ni is the number of training samples from 
class zi, n.j is the number of training instances with j-th value 
of a given feature, and nij is the number of training samples 
of class zi having j-th value of the feature. The first two 
terms in (5) represent the description length of the class 

labels prior to partitioning on the values of a feature, while 
the remaining two terms represents description length after 
partitioning. The cutpoint for discretization is selected by 
evaluating gain in MDL, instead of entropy in (3) and (4), 
from the candidate partitions. 

3. EXPERIMENTS 

The experimental results reported in this paper investigated 
the performance gain for the hand geometry biometrics. We 
acquired the right hand images of 100 users using a digital 
camera within an interval of 3 months. Each of these users 
contributed about 5 images in one session and only 10 
images from every user were employed in our experiments. 
The hand images were acquired using simple peg-free 
imaging setup as detailed in [7]. The acquired images were 
binarized and employed for feature extraction. The 
thresholding limit was automatically computed, once for 
each acquisition setup, using Otsu’s approach, and used in 
subsequent images. We extracted 23 hand geometry features 
and used in our experiments: 4 finger length (h1-h4), 8 finger 
width (h5-h12), palm width (h13), palm length (h14), hand 
area (h15), hand length (h16), perimeter (h17), solidity (h18),
extent (h19), convex area (h20), eccentricity (h21), and x-y
position of centroid relative to shape boundary (h22-h23).
The details of these features can be found in [4], [7]. The 5 
hand images from each of the users were used for the 
training and remaining were employed for the testing. 
 The training samples from the 100 users were 
subjected to discretization as detailed in section 3. The 
performance for unsupervised discretization using equal 
interval width and equal frequency interval was investigated 
on four classifiers; KNN, Naïve Bayes, SVM and FFN. The
k-nearest neighbors were obtained from the minimum 
Euclidean distance between the query feature vector and 
those from training samples. The parameters of SVM and 
FFN employed in the experiments were empirically 
selected. The SVM using polynomial kernel achieved much 
better results than those from radial basis function. 
Therefore to conserve the space only results from 
polynomial kernel are reported. The SVM training was 
achieved with C-SVM, a commonly used SVM classification 
algorithm [4]. The training parameter  and  were 
empirically fixed at 1 and 0.001 respectively. Similarly the 
number of input nodes in FFN were also empirically 
selected for the best performance; 80. The FFN neuron 
weights were updated using resilient backpropagation 
algorithm and the training was aborted if the maximum 
number of training steps reached to 1000. The confusion 
matrix resulting from the experiments on 500 test samples is 
quite large to be reproduced in this paper. Therefore we 
selected following few performance indices, i.e. Kappa 
Statistic [9], Accuracy and Precision, to ascertain the 
performance improvement. 

II ­ 126



Figure 4: Performance improvement using discretization for (a) KNN, 
(b) naïve Bayes, (c) SVM, and (d) FFN classifier. 
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where P(A) is the observed proportion of true positive (TP)
and true negative (TN), P(E) is the expected proportion of 
TP and TN, FN and FP respectively represents the false 
negative and false positive matches from the test data.   

4. RESULTS 

The k-Nearest Neighbor (k-NN) classifier is a simple 
nonparametric classifier that does not require training and 
hence most commonly preferred in biometric recognition. 
Figure 4(a) illustrates its gain in recognition accuracy with 
the increase in number of bins used to discretize the features 
in unsupervised approach. We can observe the initial 
increase in performance and its stabilization in subsequent 
stages/increase. The equal frequency approach achieves 
better performance for smaller number of bins while equal 
width approach outperforms for higher number (crossover 
of about 16) of bins. Table 1 illustrates comparative 
performance for k-NN classifier using unsupervised and 
supervised discretization schemes. The average precision
result in this table closely follows the recognition accuracy,
except those in the last row which suggest the presence of 
large false positive matches in absence of any feature 
discretization. The overall performance indicator kappa
closely follows the results from recognition accuracy, 
suggesting the significant increase in performance with the 
feature discretization. The results in Table 1 suggest that the 
feature discretization using entropy based heuristics 
outperforms those based using MDL representation of hand 
geometry features. 

The supervised discretization of features using 
entropy gain discretized 23 hand geometry features into 181 
discrete levels. The discretization of some of these features 
from the training samples is illustrated in Figure 2. The first 
feature (h1, the left finger length) required only 7 discrete 
levels which can be observed from Figure 2. This Figure 
also illustrates the distribution of these 7 discrete levels 
among 500 training samples. Similar partitioning of 
continuous feature values into discrete ones for the feature 
h2 is illustrated in Figure 3. The discretization scheme using 
entropy-based heuristic, on an average, required 7.87 

discrete levels per feature. However the supervised 
discretization using equal interval width does not offer any 
gain in recognition accuracy if less than 12 bins are 
employed for discretization. Even with the increase in 
number of bins the maximum recognition accuracy that can 
be achieved from equal interval width is 92.6% (22 bins) 
while those from equal frequency interval is 92.4% (12 
bins), i.e., smaller than that can be achieved from supervised 
entropy-based approach requiring only 7.87 bins on an 
average. The feature discretization requirements using MDL 
were huge, i.e. requiring an average of 23 discrete levels per 
feature, while achieving maximum accuracy of only 89.2%. 

Table 2 illustrates summary of comparative performance 
achieved from the Naïve Bayes classifier. The usage of 
unsupervised discretization can deliver 5.2% improvement 
in recognition accuracy for equal interval width and 3.4% 
for equal frequency interval discretization. The entropy-
based discretization achieves the best performance, i.e.
recognition accuracy of 94.6%, while employing minimum 
average number (7.87) of bins for feature representation. 
The performance indices from the naïve Bayes are slightly 
better than those from k-NN but this comes with the added 
cost of increased classifier complexity. Table 3 similarly 
presents comparative results from SVM while Table 4 
summarizes results from FFN classifiers. Comparison of 
Table 1, 2, 3, and 4 suggests that the discretization of 
features achieves significant increase in performance for 
these four classifiers while SVM performing best of all with 
recognition accuracy of 95%.

5. CONCLUSIONS 

The experimental results illustrated in previous section 
suggests that (i) the discretization of hand biometric features 

II ­ 127



achieves significant improvement in the performance (6.1% 
for k-NN, 5.2% for naïve Bayes, 7% for SVM, 4% for FFN), 
(ii) gradual increase (decrease) in performance for equal 
frequency (width) unsupervised discretization with the 
increase in number of bins and the crossover is between 14-
17 bins, (iii) the performance of equal frequency interval is 
much better for smaller number of bins which is 
computationally attractive for online biometric devices, and 
(iv) supervised discretization scheme using entropy based 
heuristics achieves the best overall performance, i.e. highest 
recognition accuracy with smallest average number of bins, 
and is highly recommended for its usage. 

The discretization biometric features can significantly 
reduces the number of possible values of the acquired 
continuous features and can be useful for several reasons; 
the classifier operating on discretized data investigates 
narrow space of possible hypotheses and thus reduces the 
likelihood of overfitting, i.e. chances of finding complex 
hypotheses that fits well for the training samples just by 
chance. Secondly, the discretization accelerates learning 
because discrete features processed faster, than continuous 
ones, assuming that the time required for the discretization 
of continuous features is negligible. Thus in addition to 
higher recognition accuracy, the discretization significantly 
reduces the complexity of classifiers than those directly 
operating on normalized biometric data. 
 The supervised discretization requires 
recomputation of discrete intervals (levels) every time a new 
user is added to the biometric system and therefore highly 
suitable for those biometric systems in which number of 
users is fixed, e.g. access in buildings and offices. In 
situations where the number of users varies dynamically, 
unsupervised discretization can be better alternative to avoid 
recomputation of discretization intervals with each new user 
addition. This work has illustrated the benefits of 
discretization for hand geometry system and its exploitation 
for other biometric traits, i.e. ear, palmprint, face, etc, is 
expected/suggested for performance improvement. The cost 
effective discretization of continuous biometric features, 
based on some performance indices (EER, FAR or FRR),
can be highly useful in dynamically controlling the 
performance of biometric systems and is suggested for 
future work. 
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