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ABSTRACT
We focus here on two secure biometric systems (a common

randomness based scheme [1], [2], [3] and a fuzzy commit-

ment scheme [4]) and discuss their privacy preserving prop-

erties. We derive bounds on the privacy leakage in these

schemes. We also show the relation between employed error-

correction and leakage on biometric information, and between

privacy and security for the fuzzy commitment scheme.

Index Terms— Biometric authentication, privacy, secu-

rity

1. INTRODUCTION

Nowadays with the introduction of biometric technologies in

daily life the importance of secure storage and communica-

tion of data in biometric systems increased. Unlike usual

secret keys, which can be canceled and changed if compro-

mised, biometric data is not revokable. Therefore, secure

storage of biometric data implies protection of biometric tem-

plates in such a way that data which is communicated and/or

stored in the database provides no or limited negligible infor-

mation on the actual biometric data.

Biometric authentication is the process of verifying the

identity of an individual using measurements of his/her bio-

logical characteristics. The attempts to create secure authen-

tication schemes led to the fuzzy commitment scheme [4]. In

this work the idea of the one-time pad principle is used to

create a secure authentication scheme. A secret (codeword)

associated with a person to be authenticated is hashed using a

one-way function and stored in the database. Further, this key

is concealed using biometric data, which are assumed to be

independent uniformly distributed, and stored in the database

as well. During the authentication process, the concealed key

is sent via public channel to facilitate reliable verification.

A positive authentication decision is only taken if biometric

data presented during authentication is close to the enrollment

data. In [4], however, no rigorous results were presented on

the security of the scheme in case the data is not independent

uniformly distributed, as well as on the privacy properties of

the scheme.
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In general, the assumption on the data to be independent

uniformly distributed is hardly realistic and, therefore, later in

[3] a secure authentication scheme was specified by introduc-

ing a common randomness extraction layer combined with

one-time pad. It was also proven there that the fuzzy com-

mitment scheme is only secure if it operates on independent

uniformly distributed data.

In both schemes in order to perform reliable authentica-

tion, some data has to be publicly communicated. In this pa-

per we analyze privacy preserving properties of these schemes,

with respect to the publicly communicated data, as well as the

relation between privacy and secrecy.

2. FUZZY COMMITMENT SCHEME
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Fig. 1. Fuzzy commitment scheme.

Let us consider the fuzzy commitment scheme (Figure 1).

In this scheme an encoder uniformly chooses a binary secret

key K for biometric data XN , and encodes this secret key

into a binary codeword CN , from a selected error-correcting

code. The offset ZN = CN ⊕ XN is released to the decoder

for the authentication.

In the authentication phase the offset ZN is added modulo-

2 to the biometric sequence Y N , observed by the decoder

ĈN = ZN ⊕Y N = CN ⊕XN ⊕Y N . The decoder finds the

closest codeword in the corresponding error-correcting code

and decodes this codeword to a secret key K̂. If K̂ = K, the

authentication decision is positive.

In the described fuzzy commitment scheme a binary error-

correcting code is assumed to be is one-to-one. Since the se-

cret key sequence K is encoded into a binary codeword CN ,
this implies that H(K) = H(CN ) = NRc, where Rc is the

rate of the chosen code.
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Assume that the biometric sequence XN is a stationary

binary sequence with entropy

H∞(X) = lim
N→∞

H(X1, X2, · · · , XN )/N

= lim
N→∞

H(XN |XN−1
1 ). (1)

The binary entropy function h(·) is defined as h(p) =
−p log2(p) − (1 − p) log2(1 − p) for 0 ≤ p ≤ 1. And for

0 ≤ α ≤ 1 we define the inverse of the binary entropy func-

tion h−1(α) = q if 0 ≤ q ≤ 1/2 and h(q) = α. Moreover,

for 0 ≤ p1, p2 ≤ 1 let p1 ∗ p2 = p1(1 − p2) + (1 − p1)p2.

Theorem 1 For random binary independent sequences XN

and CN , if XN is stationary, the following statement holds:

H(ZN )/N ≥ h[h−1(H∞(X)) ∗ h−1(Rc)], (2)

where ZN = (Z1, · · · , ZN ) = (X1 ⊕ C1, · · · , XN ⊕ CN ).
This is an adapted version of the binary analog to the entropy-
power inequality (Shamai and Wyner [5]).

In the fuzzy commitment scheme the side information ZN is

publicly communicated to the decoder. Thus, we are inter-

ested in the amount of information that can be obtained by an

eavesdropper from ZN about the biometric data XN . There-

fore, to characterize the information leakage, we would like to

evaluate the mutual information I(XN ;ZN )/N . This mutual

information can now be rewritten as

I(XN ;ZN ) = H(ZN ) − H(ZN |XN )
= H(XN ⊕ CN ) − H(XN ⊕ CN |XN )
= H(XN ⊕ CN ) − H(CN ). (3)

where the last equality holds since CN is determined by K
and XN and K are independent.

Theorem 2 In the secure fuzzy commitment scheme, informa-
tion leakage on XN is unavoidable, more precisely,

I(XN ;XN ⊕ CN )/N ≥ 1 − Rc.

Moreover, for any code rate Rc < 1 the privacy leakage de-
creases if H∞ decreases, which leads to secrecy leakage.

Proof. Consider a secure fuzzy commitment scheme, viz. a

scheme operated on uniform i.i.d. biometric sequences XN

(H∞(X) = 1). Then substituting H∞(X) and Rc into binary

analog to entropy-power inequality (2), we obtain the follow-

ing bound on the biometric information leakage

I(XN ; ZN )/N = H(ZN )/N − H(CN )/N
≥ h[h−1(H∞(X)) ∗ h−1(Rc)] − Rc

= h[1/2 ∗ h−1(Rc)] − Rc

= h(1/2) − Rc

= 1 − Rc. (4)

Perfect privacy, i.e.

I(XN , ZN )/N = 0,

can be only achieved if Rc = 1, but then the error-correcting

capability of the code disappears. This solution is not feasi-

ble. Thus, we conclude that fuzzy commitment scheme on

noisy data does not possess privacy preserving properties and

the amount of the information that is leaked by the scheme is

lower bounded by 1 − Rc.
The same bound also follows from the fact that for a sim-

ple code with NRc information symbols, followed by

N −NRc parity symbols, it holds that H(Cn|Cn−1
1 ) = 1 for

n ≤ NRc and H(Cn|Cn−1
1 ) = 0 for n > NRc, where we

also assume that NRc is integer. Therefore, from (2)

H(ZN )/N =
1
N

N∑
n=1

H(Zn|Zn−1
1 )

≥ 1
N

NRc∑
n=1

h[h−1(H∞(X)) ∗ h−1(1)]

+
1
N

N∑
n=NRc+1

h[h−1(H∞(X)) ∗ h−1(0)]

=
1
N

[NRc + (N − NRc)H∞(X)]

= Rc + (1 − Rc)H∞(X)
= H∞(X) + Rc(1 − H∞(X)). (5)

Again, for uniform i.i.d. XN we obtain that

I(XN ; ZN )/N ≥ 1 − Rc, (6)

and using the same reasoning as before, we conclude that

a privacy preserving fuzzy commitment scheme is only ob-

tained if Rc = 1, i.e. when no error-correcting code is em-

ployed.

If we next consider the case where H∞ < 1, we see that

the lower bound on the privacy leakage is reduced to

I(XN ;ZN )/N ≥ h[h−1(H∞(X)) ∗ h−1(Rc)] − Rc. (7)

If H∞ = 0, there is no privacy leakage, however, biometric

data are not deterministic, and hence H∞(X) > 0.
If we additionally know that we apply a simple code with

NRc information symbols, followed by N−NRc parity sym-

bols, the lower bound becomes better (follows from Jensen’s

inequality):

I(XN ; ZN )/N ≥ H∞(X)(1 − Rc). (8)

This relaxation, however, will result in information leakage

on the secret (see [3]) expressed by the following inequalities:

lim
N→∞

I(K; ZN )/N ≥ h[h−1(H∞(X)) ∗ h−1(Rc)]

−H∞(X) > 0, (9)

lim
N→∞

I(K; ZN )/N ≥ Rc(1 − H∞(X)) > 0, (10)

for 0 < H∞(X) < 1. Note, that the last inequality corre-

sponds to the case where we have a simple code with NRc

information symbols, followed by N − NRc parity symbols.

. �
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Fig. 2. Lower bound plots on information leakage.

Figure 2 illustrates lower bounds on the amount of the

information that the system leaks on a secret and biometric

data for different values of H∞(X) and Rc, and demonstrates

the relations between them. In this figure the general case is

considered, i.e the privacy bound (7) and secrecy bound (9)

as a function of Rc (= H(K)/N ), and H∞(X).

3. COMMON RANDOMNESS BASED SCHEME
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Fig. 3. Randomness extraction.

Biometric authentication system can be viewed as com-

munication system in which an encoder and a decoder have

to extract common information (common randomness) S out

of two dependent biometric measurements XN and Y N . The

terminals in the system want to extract as much key infor-

mation as possible. To ensure reliable reconstruction of the

common randomness at the decoder, the encoder sends helper

information M to the decoder. The communication of the

helper is performed via a public channel, see Figure 3. This

model is also referred to as a source-type model and was first

considered in [1], [2]. To address the problem of biomet-

ric cancelable keys, viz., to bind more than one secret with

biometric data, a masking layer is introduced on top of the

common randomness layer (see Figure 4). In this layer an

independent uniformly distributed secret key K is randomly

selected for a biometric data sequence XN and extra helper

information, the secret key added modulo-2 to the common

randomness extracted at the first layer, is sent to the decoder.

Again, this helper data is publicly communicated.
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Fig. 4. Masking layer.

The following two theorems (for detailed proofs see [1],

[3]) summarize the properties of the secure authentication

scheme constructed as above.

Theorem 3 For the common randomness extraction scheme,
processing i.i.d. sequences, for each δ > 0, for all N large
enough, there exists a sequence of codes satisfying

Pr{Ŝ �= S} ≤ δ,

H(S)/N ≥ I(X; Y ) − δ,

I(S;M)/N ≤ δ.

Conversely, there exists no secure (I(S; M)/N ≈ 0) and re-
liable (Pr{Ŝ �= S} ≈ 0) scheme if H(S)/N > I(X; Y ).

Proof sketch: The achievability proof of the theorem relies on

the random binning argument. The set of typical X-sequences

is partitioned in codes for the channel from X to Y, there are

roughly 2NH(X|Y ) of such codes and all of these codes con-

tain approximately 2NI(X;Y ) codewords. The index of the

code is sent as helper data to the decoder. The decoder then,

knowing the code, uses yN to recover xN , and if the secret is

the index of xN within the code, the code-index reveals prac-

tically no information about this index. The converse follows

applying Fano’s inequality. �

Theorem 4 If we use a masking procedure, based on a uni-
form binary key sequence, the system preserves its property of
being secure, i.e.

I(K;M, K⊕S)/N ≈ 0

if H(K)/N ≈ I(X; Y ).

Proof sketch: Mutual information can be upper bounded as

I(K; M,K ⊕ S) ≤ NRs − H(S) + I(S; M) and applying

Fano’s inequality the result of the theorem follows. �

Now we investigate how much information about biomet-

ric data is eavesdropped by communication helper data over a

public channel.

Theorem 5 Consider an i.i.d. pair (X,Y ) of correlated sources.
For all ε > 0, N large enough and secrecy rate Rs = I(X;Y )−
ε, the mutual information between biometric data and pub-
licly communicated data is upper-bounded by following ex-
pression

I(XN ; K ⊕ S, M)/N ≤ H(X|Y ) + 3ε.
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Proof. First observe that

0 ≤ I(XN ; K ⊕ S|M)
= H(K ⊕ S|M) − H(K ⊕ S|XN ,M)
≤ H(K) − H(K ⊕ S|XN ,M, S)
= H(K) − H(K|XN , M, S)
= H(K) − H(K) = 0 (11)

We use this in

I(XN ; K ⊕ S, M)
= I(XN ;M) + I(XN ; K ⊕ S|M)
= I(XN ;M)
= H(M) − H(M |XN ) = H(M). (12)

Now consider the encoder. We are going to use a random

binning argument to prove the result of the theorem. We fix

ε > 0 and define two sets Aε(X) and Aε(X, Y ) to be typi-

cal and jointly typical sequences as in Cover and Thomas [6],

based on the joint distribution of the XY -source. To each bio-

metric sequence xN a helper-label m ∈ {1, 2, · · · , 2NRh} is

assigned by an encoder with probability Pr{M(xN ) = m} =
2−NRh . Thus,

H(M) ≤ NRh. (13)

Moreover, a randomness-label s ∈ {1, 2, · · · , 2NRs} is as-

signed to each sequence xN with probability Pr{S(xN ) =
s} = 2−NRs .

The encoder has to make xN reconstructible from both the

helper label m and the randomness label s. Therefore, it has

to find a unique sequence xN with labels m and s such that

xN ∈ Aε(X). (14)

The error probability averaged over the ensemble of random

binnings satisfies

Pε ≤ Pr{XN /∈ Aε ∪⋃
xN �=XN :

xN∈Aε

M(xN ) = M(XN ) ∧ S(xN ) = S(XN )}

≤ Pr{XN /∈ Aε} +∑
xN �=XN :

xN∈Aε

Pr{M(xN ) = M(XN ), S(xN ) = S(XN )}

≤ Pr{XN /∈ Aε} + |{xN : xN ∈ Aε}|2−N(Rh+Rs)

≤ ε + 2N(H(X)+ε) · 2−N(Rh+Rs) ≤ 2ε. (15)

which is satisfied if Rh + Rs − H(X) − ε = ε. Since the

secrecy rate of our system is Rs = I(X;Y )− ε, we conclude

Rh = H(X|Y ) + 3ε. (16)

Combining (12), (13) and (16), we finalize the proof. �

4. CONCLUSIONS

We have considered two types of secure biometric authenti-

cation schemes and investigated their properties of being pri-

vacy preserving. The privacy of the system has been analyzed

from the publicly communicated data point of view. In gen-

eral given the secret key and the helper data it is always pos-

sible to reconstruct biometric data. Therefore, it is assumed

that the secret key is protected by a one-way hash function

[4]. Although in this setup secret keys are not private in in-

formation theoretical sense, a hash function guarantees com-

putational security (privacy in our case). By analyzing the

publicly communicated helper data, it has been shown that

none of these schemes is perfectly private and bounds on the

privacy loss have been provided. Analysis shows that biomet-

ric privacy depends on error-correction method used in the

scheme, and the higher the noise in biometric measurements

is the more information about the data has to be communi-

cated and, thus, the more biometric information is leaked to

an eavesdropper. Moreover, it has been shown that in a fuzzy

commitment scheme the effect of increasing privacy will have

a negative effect on the secrecy of the system and the other

way around. Furthermore, since in general biometric data do

not have full entropy and always require an error-correcting

code to be used for reliable authentication, the fuzzy com-

mitment scheme will have a decrease in both security and

privacy. We conclude that to achieve a secure system with

fixed privacy properties, it is better to use a scheme based on

a randomness-extraction layer followed by a masking layer.
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