
EFFICIENT MEMORYLESS CORDIC FOR FFT COMPUTATION

M. Garrido and J. Grajal

Departamento de Señales, Sistemas y Radiocomunicaciones
ETSIT, Universidad Politécnica de Madrid

Ciudad Universitaria s/n, 28040, Madrid, Spain
mgarrido@gmr.ssr.upm.es

ABSTRACT

A new memoryless CORDIC algorithm for the FFT com-
putation is proposed in this paper. This approach calculates
the direction of the micro-rotations from the control counter
of the FFT, so the area of the rotator hardly depends on the
number of rotations, which is particularly suitable for the com-
putation of FFTs of a high number of points. Moreover, the
new CORDIC presents other advantages such as the simpli-
cation of the basic CORDIC processor used to calculate the

micro-rotations, or an easy way to compensate the intrinsic
gain of the CORDIC algorithm. Additionally, the VLSI im-
plementation of the algorithm is a pipeline architecture with
high performance in terms of speed, throughput and latency.

Index Terms— Memoryless systems, Pipeline process-
ing, Discrete Fourier transforms, Very-large-scale integration.

1. INTRODUCTION

Nowadays, signal processing systems are characterized by a
high complexity and real time operation. To satisfy these real
time requirements, FPGA-based hardware acceleration sys-
tems provide a reasonable speedup with very low cost. The
enormous integration density of nowadays technologies has
allowed current FPGAs to hold a complete system in a single
chip, the so-called System on Chip (SoC) approach. In this
context, any improvement in speed or area of a particular im-
plementation drastically improves the performance and scope
of the whole signal processing system.

The FFT is a key element in most signal processing ap-
plications. When analyzing its structure, we can see that it
presents important demands of memory, both for the rotations
and samples. Given that the complex multiplications carried
out to perform rotations in the FFT require very large area or
a large number of embedded multipliers, most architectures
use the CORDIC algorithm [1] instead of conventional multi-
pliers.

In this work we propose an ef cient architecture for the
CORDIC algorithm that allows very large FFT implementa-

This work has been supported by Project TEC2005-07010-C02-
01/TCM.

tions thanks to the removal of the rotations memory, which
is one of the most area-consuming components of other de-
signs. Moreover, the proposed architecture improves the per-
formance of previous approaches, what results in a very ef -
cient implementation. The main contributions of our imple-
mentation are the following:

• The rotator requires no memory, so the area hardly de-
pends on the number of rotations, which permits the
calculation of FFTs of a larger number of points.

• The circuit ful lls real time requirements due to a high
speed, a low latency and a throughput of one sample
per clock cycle.

• The basic CORDIC processor, which computes the mi-
cro-rotations, has been simpli ed based on a novel mo-
di cation of the rotation sequence.

• The intrinsic scale of the conventional CORDIC has
been reduced and an easy compensation is proposed.

• The implementation is highly parametrizable, which ma-
kes it adaptable to any application.

Important work has been carried out on the implementa-
tion of the FFT rotators but, to the best of our knowledge, no
previous work presents a memoryless scheme like the one we
propose here. In some cases the memory size has been re-
duced, but the reduction is only to log2N [2], or 0.5N [3],
where N is the number of points of the FFT. Additionally,
other important aspects of the CORDIC rotators that can be
found in the literature are the design of the basic CORDIC
processor [2, 4, 5], the scale factor of the CORDIC [2, 5], the
computation of the rotation vector [6], or the performance in
terms of speed [4, 7] and latency [6]. All these points have
also been addressed in this work.

2. CORDIC ALGORITM

The CORDIC algorithm [1] decomposes the desired rotation
angle, θ, into a sum of a set of M prede ned angles, αi, with
i = 0, . . . , M − 1:

θ =
M−1∑
i=0

αi + ε (1)

II ­ 1131­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

where ε is the error of the approximation, and,

αi = ±tg−1(2−i) (2)

Thus, the rotation is accomplished iteratively according
to:

xi+1 = xi − yiδi2−i

yi+1 = yi + xiδi2−i (3)

where δi indicates the direction of the so called micro-rotation.
In a conventional CORDIC, δi ∈ {−1, 1}. It means that

all the rotations are accomplished, what leads to a constant
gain of the rotator. This intrinsic gain can be compensated by
multiplying the output by:

K =
M−1∏
i=0

cos(αi) =
M−1∏
i=0

cos(tg−1(2−i)) (4)

3. MEMORYLESS CORDIC ARCHITECTURE

Figure 1 shows the architecture of the designed CORDIC. The
main difference between this circuit and other CORDIC rota-
tors is the fact that no memory is required. Thus, the rota-
tion sequence is obtained from the counter used to control the
whole N -point FFT, which counts from 0 to N − 1. Firstly,
the rotation angle, θ, is calculated and then the corresponding
rotation sequence is generated. As occurs in a conventional
CORDIC, δi ∈ {−1, 1}, leading to a constant gain. Finally,
the sequence is adapted to the module that rotates the signal
in order to simplify the design.

Fig. 1. CORDIC Rotator.

The micro-rotations are calculated by means of a pipeline,
where each stage rotates the input data a certain angle, ac-
cording to the CORDIC algorithm. The number of stages
can be selected by the user depending on the desired preci-
sion. Besides, it must be noted that the rotation of 45◦ is not
considered. In a conventional CORDIC rotator, the 45◦ rota-
tion places the remainder angle in the range [−45◦, 45◦]. By
contrast, in our design this is achieved by the 180◦ and 90◦

rotations, which introduces no error and reduces the intrinsic
gain of the CORDIC. On the other hand, due to the pipeline
structure of the micro-rotations, the circuit works at a rate of
1 sample per clock cycle.

Finally, the output data can be scaled in order to compen-
sate the intrinsic gain of the CORDIC rotator.

3.1. Angle generator

According to the Cooley-Tukey algorithm [8], an N-point FFT
can be divided into n = logrN stages where r is the radix of
the FFT. We will assume that both N and r are a power of 2.
In this context, the angle sequence at the stage s ∈ {1 . . . n}
has a length L = rs and is repeated N/rs times in order to
perform the N required rotations.

The angle sequence, depends on the chosen radix. Thus,
the following sequence must be generated for radix 2:

as = 0, 0, 0, 0, . . .︸ ︷︷ ︸
2s−1

, 0, 1, 2, 3, . . .︸ ︷︷ ︸
2s−1

(5)

and, for radix 4,

as = 0, 0, 0, 0, . . .︸ ︷︷ ︸
4s−1

, 0, 1, 2, 3, . . .︸ ︷︷ ︸
4s−1

, 0, 2, 4, 6, . . .︸ ︷︷ ︸
4s−1

, 0, 3, 6, 9, . . .︸ ︷︷ ︸
4s−1

(6)
Generalizing for any value of radix, the angle sequence

will be generated by concatenating r subsequences:

0, p, 2p, . . . , (rs−1 − 1)p (7)

where p = 0, 1, 2, . . . , r − 1.
Figure 2 shows how these sequences can be obtained from

the 0 to N−1 counter of an N -point FFT. According to (7), p
is the value of the log2r most signi cant bits of the counter at
each stage, and the rest of the bits counts from 0 to (rs−1−1).

(a) Radix 2 (b) Radix 4

Fig. 2. Angle generation

In order to normalize all the sequences of the stages of the
FFT to the minimum rotation angle, θmin(rad) = 2π/N the
values of the sequences must be multiplied by q = N/rs or,
equivalently, shifted log2(q) bits:

ms = q · as = 0, 0, 0, 0, . . .︸ ︷︷ ︸
2s−1

, 0, q, 2q, 3q, . . .︸ ︷︷ ︸
2s−1

(8)

II ­ 114

The sequence ms represents the rotation angle if the cir-
cumference is divided into N identical angles, i.e., if θ ∈
[0, . . . , N − 1] is one of the angles of the sequence,

θ(rad) = −2π

N
θ (9)

The explained method is used to generate the angles of
both DIT (Decimation In Time) and DIF (Decimation In Fre-
quency) decompositions, considering that s = 1 is the input
stage in the DIT case and the output stage in a DIF FFT.

3.2. Generation of the rotation vector

Given the rotation angle, θ, the rotation generator calculates
the vector δ that controls the micro-rotations. The procedure
is similar to the one described in [6].

Firstly, the circuit checks the three more signi cant bits of
the angle to determine if the 180◦ and 90◦ must be ful lled.
This is possible because the angle ranges from 0 to N −1 and
N is a power of 2, so these bits divide the circumference in 8
sectors.

On the other hand, the generation of the CORDIC terms
of the rotation vector is based on the idea that φ ≈ tg(φ)
when φ → 0, so:

αi ≈ tg(αi) ≡ 2−i = 2 · 2−i−1 ≡ 2 · tg(αi+1) ≈ 2 · αi+1 (10)

Table 1 shows that this approximation is not valid for low
values of i. However, for higher values of i, it can be consid-
ered that αi/αi+1 ≈ 2.

Table 1. Relation between CORDIC angles.
i αi (deg) αi/αi+1

0 45.00000000 1.69395495
1 26.56505118 1.89260405
2 14.03624347 1.96999457
3 7.12501635 1.99226795
4 3.57633437 1.99805195
5 1.78991061 1.99951204
6 0.89517371 1.99987795
7 0.44761417 1.99996948
8 0.22381050 1.99999237
9 0.11190568 1.99999809
10 0.05595289 1.99999952

According to this, the rotation generator operates such as a
conventional CORDIC in order to calculate the rst rotations,
i.e., it checks if the remainder angle is positive or negative to
decide the direction of the rotation and then adds or subtracts
αi from this angle.

Next, the rest of the rotations are calculated considering
the described approximation. With this purpose, the remain-
der angle is normalized by the minimum rotation angle, αM ,
that corresponds to the last micro-rotation. Consequently, the
bits of the result offer the rest of the δi values.

Logically, there is a compromise between the precision of
the calculation and the hardware resources. Thus, in order to

adequate the design to a certain application, the number of
micro-rotation stages, the bits used in the calculations of the
rotation vector and the selection of the rst angle where the
approximation is considered are parameters of the circuit.

3.3. Micro-rotations and rotation adapter

The 180◦ and 90◦ rotations previous to the CORDIC stages
are easily calculated by interchanging the vector components
and/or changing their sign. On the other hand, the CORDIC
rotations are accomplished by the following circuit:

Fig. 3. Basic CORDIC processor.

This is a simpli ed version of other basic CORDIC proces-
sors [5], which usually requires multiplexers and two add/sub-
tractor components. By contrast, this novel implementation
only needs a switch, an adder and a subtractor, taking into ac-
count that the shifts are hard wired. Thus, both the area and
the latency of each CORDIC stage are reduced.

The design is based on the idea that each micro-rotation
always accomplishes an addition and a subtraction. Accord-
ing to this, the switch decides which of the shifted component
must be added and which subtracted.

However, it may change the output of the vector compo-
nents and, therefore, the input components to the following
stage may also arrive at any of the inputs. This is why the
rotation adapter is needed. Thus, it calculates δ′i from the δi

values by means of simple combinational logic.

3.4. Scaling

Scaling is one of the critical problems of some CORDIC rota-
tor designs, mainly in redundant and unidirectional architec-
tures, where δ = 0 is a possible value. According to this,
some micro-rotations may be skipped and, thus, the scale
factor is not constant. On the contrary, in a conventional
CORDIC the compensation factor is constant and known a
priori:

K =
M∏
i=0

cos(tg−1(2−i)) ≈ 0.6073 (11)

assuming that cos(tg−1(2−i)) ≈ 1,∀i > M , which can be
considered a good approximation for M ≥ 7. However, in

II ­ 115

the proposed design the 45◦ rotation has been removed and
the compensations factor is:

K =
M∏
i=1

cos(tg−1(2−i)) ≈ 0.8588 (12)

Consequently, the scale factor, K−1, has been reduced
from 1.6468 to 1.1644, which improves the performance of
the algorithm. In many applications the compensation of the
scale factor is not necessary. However, a good compensation
of the CORDIC gain can be achieved just by using 2 adders,
considering that [5]:

K = 0.8588 ≈ 0.8594 = 1− 2−3 − 2−6 (13)

4. EXPERIMENTAL RESULTS

The described algorithm has been programmed in VHDL.
The results discussed in this section have been obtained for
the case of a Virtex-II xc2v4000-6 FPGA.

Table 2. Maximum operating frequency (MHz).
CORDIC INPUT BITS OF THE SAMPLES
STAGES 8 10 12 14 16 18 20

8 307 299 292 285 278 272 266
16 278 272 266 260 255 249 244

Firstly, table 2 shows the synthesized speed for some of
the possible con gurations of the system. These results are
better than the ones obtained in recent works that uses the
same FPGA: up to 222 MHz in [4] and 176 MHz in [7].

These speed results are possible due to the fact that the
hardware implementation of the basic CORDIC processors
includes registers after the switch and at the output, in order to
reduce the critical path. Additionally, the latency of the circuit
is low. In fact, the input counter of the system is in advance,
so the rotation sequence is already calculated when the input
samples are received. Consequently, in a continuous data ow
the latency only depends on the micro-rotations stages an can
be calculated as l = 2 ·M + 5 clock cycles.

Figure 4 compares the synthesized area of a conventional
and the designed CORDIC rotators for 16 input bits and 16
micro-rotation stages, depending on the length of the angle
sequence, L. It is important to note that, according to section
3.1, Lmax = Ln = N , for an N -point FFT.

As the conventional CORDIC stores the rotation vectors
in a memory, the area of this design strongly depends on L.
On the other hand, the area of the memoryless architecture
hardly varies when L increases.

According to this, when few rotations are accomplished,
the memory of the conventional rotator takes up less area than
the control module of the memoryless one. However, for high
values of L, the memoryless CORDIC obtains much better
performance. Therefore, the designed rotator is much more

4 5 6 7 8 9 10 11 12 13 14
0

1000

2000

3000

4000

5000

6000

 log
2
(L)

A
re

a
(

S
lic

es
)

Area of the conventional and memoryless CORDIC rotators

Conventional
 CORDIC

Memoryless
 CORDIC

Fig. 4. Area of the conventional and memoryless CORDIC
rotators vs. length of the angle sequence.

adequate than other CORDIC rotators for the computation of
FFTs of a large number of points.

5. CONCLUSIONS

Our novel CORDIC algorithm calculates the rotations with-
out any memory. Additionally, an optimized design leads to
a high performance in terms of operating frequency and la-
tency. The improvement of these gures of merit opens new
possibilities for the calculation of real time long FFTs.

6. REFERENCES

[1] J.E. Volder, “The CORDIC trigonometric computing technique,” IRE
Trans. Electronic Computers, vol. EC-8, pp. 330–334, Sep. 1959.

[2] Cheng-Ying Yu, Sau-Gee Chen, and Jen-Chuan Chih, “Ef cient
CORDIC Designs for Multi-Mode OFDM FFT,” Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, vol. 3,
pp. 1036–1039, May 2006.

[3] Yun-Nan Chang and Keshab K. Parhi, “An ef cient pipelined FFT ar-
chitecture,” IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 50, pp. 322–325, Jun 2003.

[4] F. Angarita, A. Perez-Pascual, T. Sansaloni, and J. Vails, “Ef cient
FPGA Implementation of CORDIC Algorithm for Circular and Linear
Coordinates,” International Conference on Field Programmable Logic
and Applications, pp. 535–538, Aug 2005.

[5] Y. H. Hu, “CORDIC-based VLSI Architectures for Digital Signal
Processing,” IEEE Signal Processing Magazine, vol. 9, Jul 1992.

[6] D. Timmermann, H. Hahn, and B.J. Hosticka, “Low Latency Time
CORDIC Algorithms,” Computers, IEEE Transactions on, vol. 41, pp.
1010–1015, Aug 1992.

[7] T. Zaidi, Q. Chaudry, and S. A Khan, “An Area and Time Ef cient
Collapsed Modi ed CORDIC DDFS Architecture For High Rate Digital
Deceivers,” Multitopic Conference, 2004. Proceedings of INMIC 2004.
8th International, pp. 677–681, Dec 2004.

[8] J. W. Cooley and J.W Tukey, “An algorithm for machine computation of
complex fourier series,” Math. Computation, vol. 19, pp. 297–301, Apr.
1965.

II ­ 116

